12 research outputs found

    The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor

    Get PDF
    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as ‘membrane transmitter to the cell’ is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR

    Stabilizing the Meniscus for Operando Characterization of Platinum During the Electrolyte Consuming Alkaline Oxygen Evolution Reaction

    Get PDF
    Achieving a molecular-level understanding of interfacial (photo)electrochemical processes is essential in order to tailor novel and highly-performing catalytic systems. The corresponding recent development of in situ and operando tools has posed new challenges on experimental architectures. In this study, we use ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to probe the solid/liquid electrified interface of a polycrystalline Pt sample in contact with an alkaline electrolyte during hydrogen and oxygen evolution reactions. Using the “dip-and-pull” technique to probe the interface through a thin liquid layer generated on the sample surface, we observe that the electrolyte meniscus becomes unstable under sustained driving of an electrolyte-consuming reaction (such as water oxidation). The addition of an electrochemically inert supporting electrolyte mitigates this issue, maintaining a stable meniscus layer for prolonged reaction times. In contrast, for processes in which the electrolyte is replenished in the reaction pathway (i.e. water reduction in alkaline conditions), we find that the solid/liquid interface remains stable without addition of a secondary supporting electrolyte. The approach described in this work allows the extension of operando AP-XPS capabilities using the “dip-and-pull” method to a broader class of reactions consuming ionic species during complex interfacial faradaic processes
    corecore