68 research outputs found
Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system
Background: To assess the accuracy of fractionated stereotactic radiotherapy (FSRT) using a stereotactic mask fixation system. Patients and Methods: Sixteen patients treated with FSRT were involved in the study. A commercial stereotactic mask fixation system (BrainLAB AG) was used for patient immobilization. Serial CT scans obtained before and during FSRT were used to assess the accuracy of patient immobilization by comparing the isocenter position. Daily portal imaging were acquired to establish day to day patient position variation. Displacement errors along the different directions were calculated as combination of systematic and random errors. Results: The mean isocenter displacements based on localization and verification CT imaging were 0.1 mm (SD 0.3 mm) in the lateral direction, 0.1 mm (SD 0.4 mm) in the anteroposterior, and 0.3 mm (SD 0.4 mm) in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.4 mm), being maximum 1.4 mm. No significant differences were found during the treatment (P = 0.4). The overall isocenter displacement as calculated by 456 anterior and lateral portal images were 0.3 mm (SD 0.9 mm) in the mediolateral direction, -0.2 mm (SD 1 mm) in the anteroposterior direction, and 0.2 mm (SD 1.1 mm) in the craniocaudal direction. The largest displacement of 2.7 mm was seen in the cranio-caudal direction, with 95% of displacements < 2 mm in any direction. Conclusions: The results indicate that the setup error of the presented mask system evaluated by CT verification scans and portal imaging are minimal. Reproducibility of the isocenter position is in the best range of positioning reproducibility reported for other stereotactic systems
Frameless linac-based stereotactic radiosurgery (SRS) for brain metastases: analysis of patient repositioning using a mask fixation system and clinical outcomes
<p>Abstract</p> <p>Purpose</p> <p>To assess the accuracy of patient repositioning and clinical outcomes of frameless stereotactic radiosurgery (SRS) for brain metastases using a stereotactic mask fixation system.</p> <p>Patients and Methods</p> <p>One hundred two patients treated consecutively with frameless SRS as primary treatment at University of Rome Sapienza Sant'Andrea Hospital between October 2008 and April 2010 and followed prospectively were involved in the study. A commercial stereotactic mask fixation system (BrainLab) was used for patient immobilization. A computerized tomography (CT) scan obtained immediately before SRS was used to evaluate the accuracy of patient repositioning in the mask by comparing the isocenter position to the isocenter position established in the planning CT. Deviations of isocenter coordinates in each direction and 3D displacement were calculated. Overall survival, brain control, and local control were estimated using the Kaplan-Meier method calculated from the time of SRS.</p> <p>Results</p> <p>The mean measured isocenter displacements were 0.12 mm (SD 0.35 mm) in the lateral direction, 0.2 mm (SD 0.4 mm) in the anteroposterior, and 0.4 mm (SD 0.6 mm) in craniocaudal direction. The maximum displacement of 2.1 mm was seen in craniocaudal direction. The mean 3D displacement was 0.5 mm (SD 0.7 mm), being maximum 2.9 mm. The median survival was 15.5 months, and 1-year and 2-year survival rates were 58% and 24%, respectively. Nine patients recurred locally after SRS, with 1-year and 2-year local control rates of 91% and 82%, respectively. Stable extracranial disease (P = 0.001) and KPS > 70 (P = 0.01) were independent predictors of survival.</p> <p>Conclusions</p> <p>Frameless SRS is an effective treatment in the management of patients with brain metastases. The presented non-invasive mask-based fixation stereotactic system is associated with a high degree of patient repositioning accuracy; however, a careful evaluation is essential since occasional errors up to 3 mm may occur.</p
Rapid Reversal of Chondroitin Sulfate Proteoglycan Associated Staining in Subcompartments of Mouse Neostriatum during the Emergence of Behaviour
BACKGROUND: The neostriatum, the mouse homologue of the primate caudate/putamen, is the input nucleus for the basal ganglia, receiving both cortical and dopaminergic input to each of its sub-compartments, the striosomes and matrix. The coordinated activation of corticostriatal pathways is considered vital for motor and cognitive abilities, yet the mechanisms which underlie the generation of these circuits are unknown. The early and specific targeting of striatal subcompartments by both corticostriatal and nigrostriatal terminals suggests activity-independent mechanisms, such as axon guidance cues, may play a role in this process. Candidates include the chondroitin sulfate proteoglycan (CSPG) family of glycoproteins which have roles not only in axon guidance, but also in the maturation and stability of neural circuits where they are expressed in lattice-like perineuronal nets (PNNs). METHODOLOGY/PRINCIPAL FINDINGS: The expression of CSPG-associated structures and PNNs with respect to neostriatal subcompartments has been examined qualitatively and quantitatively using double-labelling for Wisteria floribunda agglutinin (WFA), and the mu-opioid receptor (muOR), a marker for striosomes, at six postnatal ages in mice. We find that at the earliest ages (postnatal day (P)4 and P10), WFA-positive clusters overlap preferentially with the striosome compartment. By P14, these clusters disappear. In contrast, PNNs were first seen at P10 and continued to increase in density and spread throughout the caudate/putamen with maturation. Remarkably, the PNNs overlap almost exclusively with the neostriatal matrix. CONCLUSIONS/SIGNIFICANCE: This is the first description of a reversal in the distribution of CSPG associated structures, as well as the emergence and maintenance of PNNs in specific subcompartments of the neostriatum. These results suggest diverse roles for CSPGs in the formation of functional corticostriatal and nigrostriatal connectivity within the striosome and matrix compartments of the developing caudate/putamen
An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance
Secondary metabolites provide a potential source for the generation of host plant resistance and development of biopesticides. This is especially important in view of the rapid and vast spread of agricultural and horticultural pests worldwide. Multiple pests control tactics in the framework of an integrated pest management (IPM) programme are necessary. One important strategy of IPM is the use of chemical host plant resistance. Up to now the study of chemical host plant resistance has, for technical reasons, been restricted to the identification of single compounds applying specific chemical analyses adapted to the compound in question. In biological processes however, usually more than one compound is involved. Metabolomics allows the simultaneous detection of a wide range of compounds, providing an immediate image of the metabolome of a plant. One of the most universally used metabolomic approaches comprises nuclear magnetic resonance spectroscopy (NMR). It has been NMR which has been applied as a proof of principle to show that metabolomics can constitute a major advancement in the study of host plant resistance. Here we give an overview on the application of NMR to identify candidate compounds for host plant resistance. We focus on host plant resistance to western flower thrips (Frankliniella occidentalis) which has been used as a model for different plant species
Shortening Delivery Times of Intensity Modulated Proton Therapy by Reducing Proton Energy Layers During Treatment Plan Optimization
Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system "Erasmus-iCycle." The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust "time-efficient plan" (with energy layer reduction) with a robust "standard clinical plan" (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases. Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results: The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions: Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs. (C) 2015 Elsevier Inc. All rights reserved
Improved efficiency of multi-criteria IMPT treatment planning using iterative resampling of randomly placed pencil beams
This study investigates whether 'pencil beam resampling', i.e. iterative selection and weight optimization of randomly placed pencil beams (PBs), reduces optimization time and improves plan quality for multi-criteria optimization in intensity-modulated proton therapy, compared with traditional modes in which PBs are distributed over a regular grid. Resampling consisted of repeatedly performing: (1) random selection of candidate PBs from a very fine grid, (2) inverse multi-criteria optimization, and (3) exclusion of low-weight PBs. The newly selected candidate PBs were added to the PBs in the existing solution, causing the solution to improve with each iteration. Resampling and traditional regular grid planning were implemented into our in-house developed multi-criteria treatment planning system 'Erasmus iCycle'. The system optimizes objectives successively according to their priorities as defined in the so-called 'wish-list'. For five head-and-neck cancer patients and two PB widths (3 and 6 mm sigma at 230 MeV), treatment plans were generated using: (1) resampling, (2) anisotropic regular grids and (3) isotropic regular grids, while using varying sample sizes (resampling) or grid spacings (regular grid). We assessed differences in optimization time (for comparable plan quality) and in plan quality parameters (for comparable optimization time). Resampling reduced optimization time by a factor of 2.8 and 5.6 on average (7.8 and 17.0 at maximum) compared with the use of anisotropic and isotropic grids, respectively. Doses to organs-at-risk were generally reduced when using resampling, with median dose reductions ranging from 0.0 to 3.0Gy (maximum: 14.3Gy, relative: 0%-42%) compared with anisotropic grids and from -0.3 to 2.6 Gy (maximum: 11.4 Gy, relative: -4%-19%) compared with isotropic grids. Resampling was especially effective when using thin PBs (3 mm sigma). Resampling plans contained on average fewer PBs, energy layers and protons than anisotropic grid plans and more energy layers and protons than isotropic grid plans. In conclusion, resampling resulted in improved plan quality and in considerable optimization time reduction compared with traditional regular grid planning
- …