1,629 research outputs found

    Impact of analyzing fewer image frames per segment during offline volumetric radiofrequency-based intravascular ultrasound measurements of target lesions prior to percutaneous coronary interventions

    Get PDF
    In the present study, we evaluated the impact of a 50% reduction in number of image frames (every second frame) on the analysis time and variability of offline volumetric radiofrequency-based intravascular ultrasound (RF-IVUS) measurements in target lesions prior to percutaneous coronary interventions (PCI). Volumetric RF-IVUS data of vessel geometry and plaque composition are generally obtained by a semi-automated analysis process that includes time-consuming manual contour editing. A reduction in the number of frames used for volumetric analysis may speed up the analysis, but could increase measurement variability. We repeatedly performed offline volumetric analyses in RF-IVUS image sets of 20 mm-long coronary segments that contained 30 de novo lesions prior to PCI. A 50% reduction in frames decreased the analysis time significantly (from 57.5 ± 7.3 to 35.7 ± 3.7 min; P < 0.0001) while geometric and compositional RF-IVUS measurements did not differ significantly from measurements obtained from all frames. The variability between measurements on the reduced number of frames versus all frames was comparable to the intra-observer measurement variability. In target lesions prior to PCI, offline volumetric RF-IVUS analyses can be performed using a reduced number of image frames (every second frame). This reduces the time of analysis without substantially increasing measurement variability

    Converting Endangered Species Categories to Probabilities of Extinction for Phylogenetic Conservation Prioritization

    Get PDF
    Categories of imperilment like the global IUCN Red List have been transformed to probabilities of extinction and used to rank species by the amount of imperiled evolutionary history they represent (e.g. by the Edge of Existence programme). We investigate the stability of such lists when ranks are converted to probabilities of extinction under different scenarios.Using a simple example and computer simulation, we show that preserving the categories when converting such list designations to probabilities of extinction does not guarantee the stability of the resulting lists.Care must be taken when choosing a suitable transformation, especially if conservation dollars are allocated to species in a ranked fashion. We advocate routine sensitivity analyses

    Impact of analyzing less image frames per segment for radiofrequency-based volumetric intravascular ultrasound measurements in mild-to-moderate coronary atherosclerosis

    Get PDF
    Volumetric radiofrequency-based intravascular ultrasound (RF–IVUS) data of coronary segments are increasingly used as endpoints in serial trials of novel anti-atherosclerotic therapies. In a relatively time-consuming process, vessel and lumen contours are defined; these contours are first automatically detected, then visually checked, and finally (in most cases) manually edited to generate reliable volumetric data of vessel geometry and plaque composition. Reduction in number of cross-sectional images for volumetric analysis could save analysis time but may also increase measurement variability of volumetric data. To assess whether a 50% reduction in number of frames per segment (every second frame) alters the reproducibility of volumetric measurements, we performed repeated RF–IVUS analyses of 15 coronary segments with mild-to-moderate atherosclerosis (20.2 ± 0.2 mm-long segments with 46 ± 13% plaque burden). Volumes were calculated based on a total of 731 image frames. Reducing the number of cross-sectional image frames for volumetric measurements saved analysis time (38 ± 9 vs. 68 ± 17 min/segment; P < 0.0001) and resulted for only a few parameters in (borderline) significant but mild differences versus measurements based on all frames (fibrous volume, P < 0.05; necrotic-core volume, P = 0.07). Compared to the intra-observer variability, there was a mild increase in measurement variability for most geometrical and compositional volumetric RF–IVUS parameters. In RF–IVUS studies of mild-to-moderate coronary disease, analyzing less image frames saved analysis time, left most volumetric parameters greatly unaffected, and resulted in a no more than mild increase in measurement variability of volumetric data

    Uptake and depuration of gold nanoparticles in Daphnia magna

    Get PDF
    This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 10 and 30 nm Au NP with different stabilizing agents [citrate (CIT) and mercaptoundecanoic acid (MUDA)] were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24 h depuration than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24 h of exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to consider in long term studies of ENP where food addition is necessary. This study demonstrates the feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are studied.Peer reviewed: YesNRC publication: Ye

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    In the Shadow of Celebrity? World-Class University Policies and Public Value in Higher Education

    Get PDF
    The growing popularity of the concept of world-class universities raises the question of whether investing in such universities is a worthwhile use of public resources. Does concentrating public resources on the most excellent universities improve the overall quality of a higher education system, especially if definitions of excellence and world-class are made by external ranking organizations? This paper addresses that question by developing a framework for weighing up trade-offs between institutional and system performance, focusing on the potential system-wide improvements which world-class university programmes (WCUPs) may bring. Because WCUPs are in a relatively early stage of their development, systemic effects are not yet clear. We therefore analyse the ex ante reasons that policy makers have for adopting WCUPs to see if they at least seek to create these systemic benefit
    corecore