32 research outputs found

    Ileal mucosal bile acid absorption is increased in Cftr knockout mice

    Get PDF
    BACKGROUND: Excessive loss of bile acids in stool has been reported in patients with cystic fibrosis. Some data suggest that a defect in mucosal bile acid transport may be the mechanism of bile acid malabsorption in these individuals. However, the molecular basis of this defect is unknown. This study examines the expression of the ileal bile acid transporter protein (IBAT) and rates of diffusional (sodium independent) and active (sodium dependent) uptake of the radiolabeled bile acid taurocholate in mice with targeted disruption of the cftr gene. METHODS: Wild-type, heterozygous cftr (+/-) and homozygous cftr (-/-) mice were studied. Five one-cm segments of terminal ileum were excised, everted and mounted onto thin stainless steel rods and incubated in buffer containing tracer (3)H-taurocholate. Simultaneously, adjacent segments of terminal ileum were taken and processed for immunohistochemistry and Western blots using an antibody against the IBAT protein. RESULTS: In all ileal segments, taurocholate uptake rates were fourfold higher in cftr (-/-) and two-fold higher in cftr (+/-) mice compared to wild-type mice. Passive uptake was not significantly higher in cftr (-/-) mice than in controls. IBAT protein was comparably increased. Immuno-staining revealed that the greatest increases occurred in the crypts of cftr (-/-) animals. CONCLUSIONS: In the ileum, IBAT protein densities and taurocholate uptake rates are elevated in cftr (-/-) mice > cftr (+/-) > wild-type mice. These findings indicate that bile acid malabsorption in cystic fibrosis is not caused by a decrease in IBAT activity at the brush border. Alternative mechanisms are proposed, such as impaired bile acid uptake caused by the thick mucus barrier in the distal small bowel, coupled with a direct negative regulatory role for cftr in IBAT function

    Variation in MSRA Modifies Risk of Neonatal Intestinal Obstruction in Cystic Fibrosis

    Get PDF
    Meconium ileus (MI), a life-threatening intestinal obstruction due to meconium with abnormal protein content, occurs in approximately 15 percent of neonates with cystic fibrosis (CF). Analysis of twins with CF demonstrates that MI is a highly heritable trait, indicating that genetic modifiers are largely responsible for this complication. Here, we performed regional family-based association analysis of a locus that had previously been linked to MI and found that SNP haplotypes 5β€² to and within the MSRA gene were associated with MI (Pβ€Š=β€Š1.99Γ—10βˆ’5 to 1.08Γ—10βˆ’6; Bonferroni Pβ€Š=β€Š0.057 to 3.1Γ—10βˆ’3). The haplotype with the lowest P value showed association with MI in an independent sample of 1,335 unrelated CF patients (ORβ€Š=β€Š0.72, 95% CI [0.53–0.98], Pβ€Š=β€Š0.04). Intestinal obstruction at the time of weaning was decreased in CF mice with Msra null alleles compared to those with wild-type Msra resulting in significant improvement in survival (Pβ€Š=β€Š1.2Γ—10βˆ’4). Similar levels of goblet cell hyperplasia were observed in the ilea of the Cftrβˆ’/βˆ’ and Cftrβˆ’/βˆ’Msraβˆ’/βˆ’ mice. Modulation of MSRA, an antioxidant shown to preserve the activity of enzymes, may influence proteolysis in the developing intestine of the CF fetus, thereby altering the incidence of obstruction in the newborn period. Identification of MSRA as a modifier of MI provides new insight into the biologic mechanism of neonatal intestinal obstruction caused by loss of CFTR function
    corecore