1 research outputs found

    Neonatal mortality risk of large-for-gestational-age and macrosomic live births in 15 countries, including 115.6 million nationwide linked records, 2000–2020

    No full text
    Objective: We aimed to compare the prevalence and neonatal mortality associated with large for gestational age (LGA) and macrosomia among 115.6 million live births in 15 countries, between 2000 and 2020. Design: Population-based, multi-country study. Setting: National healthcare systems. Population: Liveborn infants. Methods: We used individual-level data identified for the Vulnerable Newborn Measurement Collaboration. We calculated the prevalence and relative risk (RR) of neonatal mortality among live births born at term + LGA (>90th centile, and also >95th and >97th centiles when the data were available) versus term + appropriate for gestational age (AGA, 10th–90th centiles) and macrosomic (≥4000, ≥4500 and ≥5000 g, regardless of gestational age) versus 2500–3999 g. INTERGROWTH 21st served as the reference population. Main outcome measures: Prevalence and neonatal mortality risks. Results: Large for gestational age was common (median prevalence 18.2%; interquartile range, IQR, 13.5%–22.0%), and overall was associated with a lower neonatal mortality risk compared with AGA (RR 0.83, 95% CI 0.77–0.89). Around one in ten babies were ≥4000 g (median prevalence 9.6% (IQR 6.4%–13.3%), with 1.2% (IQR 0.7%–2.0%) ≥4500 g and with 0.2% (IQR 0.1%–0.2%) ≥5000 g). Overall, macrosomia of ≥4000 g was not associated with increased neonatal mortality risk (RR 0.80, 95% CI 0.69–0.94); however, a higher risk was observed for birthweights of ≥4500 g (RR 1.52, 95% CI 1.10–2.11) and ≥5000 g (RR 4.54, 95% CI 2.58–7.99), compared with birthweights of 2500–3999 g, with the highest risk observed in the first 7 days of life. Conclusions: In this population, birthweight of ≥4500 g was the most useful marker for early mortality risk in big babies and could be used to guide clinical management decisions.</p
    corecore