9 research outputs found

    Stepwise Release of Biologically Active HMGB1 during HSV-2 Infection

    Get PDF
    BACKGROUND: High mobility group box 1 protein (HMGB1) is a major endogenous danger signal that triggers inflammation and immunity during septic and aseptic stresses. HMGB1 recently emerged as a key soluble factor in the pathogenesis of various infectious diseases, but nothing is known of its behaviour during herpesvirus infection. We therefore investigated the dynamics and biological effects of HMGB1 during HSV-2 infection of epithelial HEC-1 cells. METHODOLOGY/PRINCIPAL FINDINGS: Despite a transcriptional shutdown of HMGB1 gene expression during infection, the intracellular pool of HMGB1 protein remained unaffected, indicating its remarkable stability. However, the dynamics of HMGB1 was deeply modified in infected cells. Whereas viral multiplication was concomitant with apoptosis and HMGB1 retention on chromatin, a subsequent release of HMGB1 was observed in response to HSV-2 mediated necrosis. Importantly, extracellular HMGB1 was biologically active. Indeed, HMGB1-containing supernatants from HSV-2 infected cells induced the migration of fibroblasts from murine or human origin, and reactivated HIV-1 from latently infected T lymphocytes. These effects were specifically linked to HMGB1 since they were blocked by glycyrrhizin or by a neutralizing anti-HMGB1 antibody, and were mediated through TLR2 and the receptor for Advanced Glycation End-products (RAGE). Finally, we show that genital HSV-2 active infections also promote HMGB1 release in vivo, strengthening the clinical relevance of our experimental data. CONCLUSIONS: These observations target HMGB1 as an important actor during HSV-2 genital infection, notably in the setting of HSV-HIV co-infection

    Phenotypic Complexity, Measurement Bias, and Poor Phenotypic Resolution Contribute to the Missing Heritability Problem in Genetic Association Studies

    Get PDF
    Background The variance explained by genetic variants as identified in (genome-wide) genetic association studies is typically small compared to family-based heritability estimates. Explanations of this ‘missing heritability’ have been mainly genetic, such as genetic heterogeneity and complex (epi-)genetic mechanisms. Methodology We used comprehensive simulation studies to show that three phenotypic measurement issues also provide viable explanations of the missing heritability: phenotypic complexity, measurement bias, and phenotypic resolution. We identify the circumstances in which the use of phenotypic sum-scores and the presence of measurement bias lower the power to detect genetic variants. In addition, we show how the differential resolution of psychometric instruments (i.e., whether the instrument includes items that resolve individual differences in the normal range or in the clinical range of a phenotype) affects the power to detect genetic variants. Conclusion We conclude that careful phenotypic data modelling can improve the genetic signal, and thus the statistical power to identify genetic variants by 20-99

    Is brightest best? Testing the Hamilton-Zuk hypothesis in mandrills

    Get PDF
    Although many primates exhibit striking coloration, including brightly colored pelage and bare areas of skin, our understanding of the function and evolution of these traits pales in the face of knowledge about color in other taxa. However, recent years have seen an increase in the number of studies of individual variation in primate color and evidence is accumulating that these traits can act as important signals to conspecifics. Mandrills are arguably the most colorful of all primates. Here, we review what we have discovered about the signal function of coloration in male and female mandrills from our long-term studies of a semi-free-ranging colony in Franceville, Gabon and test the predictions of the Hamilton-Zuk hypothesis - that bright coloration is condition dependent, and that only individuals of superior quality will be able to express color fully - in this species. We compare measures of facial coloration in both sexes with parasite load (using fecal analysis over one annual cycle), immune status (hematological parameters), neutral genetic diversity (microsatellite heterozygosity) and major histocompatability (MHC) genotype to examine whether red coloration acts as an honest signal of individual quality in mandrills. We found that red coloration was unrelated to parasitism and hematological parameters. Red was also unrelated to genome-wide heterozygosity and MHC diversity, although specific MHC genotypes were significantly related to red. The healthy, provisioned nature of the colony and problems associated with observational, correlational studies restrict interpretation of our data, and it would be premature to draw conclusions as to whether color signals individual quality in mandrills. We conclude with some suggestions for future studies on the signal content of color in mandrills and other primates

    Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases

    No full text
    corecore