38 research outputs found

    Mission Himalaya: Exploring the Impact of a Supported High-Altitude Mountaineering Expedition on the Well-Being and Personal Development of UK Military Veterans

    Get PDF
    Meaningful, positive, emotional and challenging adventurous activities may generate personal growth or recovery from ill health or injury. In this study, we used a distinctive longitudinal and immersive research approach to explore the psychological impact of a high-altitude expedition to the Nepalese Himalaya on 10 (9 males) UK military veterans with longstanding well-being concerns. In the 12 months prior to the expedition, participants took part in three training weekends in the UK mountains. During the expedition, instructors—who were all experienced health coaches—facilitated reflective practices with the beneficiaries throughout, focusing on experiential transfer to day-to-day lives after the expedition. Follow-up interviews, conducted up to 18-months post-expedition, identified that the most desirable changes aligned with the three innate psychological needs of self-determination theory: autonomy, competence and relatedness. The routines established during the preparation stage and during the expedition itself activated a renewed energy for personal improvement. At 18 months post-expedition, the key changes reflected altered perspective, employment skills and work–life balance, increased physical activity and enhanced personal awareness and mindfulness. Importantly, supported by regular health coaching and focused on the transfer of learning, expeditions can activate meaningful long-term changes to the well-being and personal development of military veterans

    Sex steroid binding proteins in the plasma of hatchling Chelonia mydas

    No full text
    Sex steroid binding proteins were identified in hatchling female and male Chelonia mydas by dialysis and steady-state gel electrophoresis when examined at 4 degrees C. A testosterone binding protein with high binding affinity (K (a) = 0.98 +/- 0.5 x 10(8) M(-1)) and low to moderate binding capacity (B (max) = 7.58 +/- 4.2 x 10(-5) M) was observed in male hatchlings. An oestradiol binding protein with high affinity (K (a) = 0.35 +/- 1.8 x 10(8) M(-1)) and low to moderate binding capacity (B (max) = 0.16 +/- 0.5 x 10(-4) M) was identified in female hatchlings. This study confirmed that sex steroid binding proteins (SSBPs) become inactivate in both sexes at 36 degrees C, the maximum body temperature of sea turtle hatchlings at emergence. The inactivation of SSBPs at this temperature indicates that sex steroid hormones circulate freely in the body of the green turtles and are biologically available in the blood plasma. This observation is consistent with female and male hatchling C. mydas having different physiological (hormonal) and developmental requirements around the time of emergence. Moreover, concurrently conducted competition studies showed that sex steroids including testosterone and oestradiol do compete for binding sites in both male and female C. mydas hatchling plasma. Competition also occurred between testosterone and dihydrotestosterone for binding sites in the male C. mydas plasma. However, competition studies in the plasma of female hatchling C. mydas demonstrate that oestrone does not compete with oestradiol for binding sites
    corecore