19 research outputs found

    Insight into the evolution of the proton concentration during autohydrolysis and dilute-acid hydrolysis of hemicellulose

    No full text
    Background: During pretreatment, hemicellulose is removed from biomass via proton-catalyzed hydrolysis to produce soluble poly- and mono-saccharides. Many kinetic models have been proposed but the dependence of rate on proton concentration is not well-defined; autohydrolysis and dilute-acid hydrolysis models apply very different treatments despite having similar chemistries. In this work, evolution of proton concentration is examined during both autohydrolysis and dilute-acid hydrolysis of hemicellulose from green bamboo. An approximate mathematical model, or “toy model”, to describe proton concentration based upon conservation of mass and charge during deacetylation and ash neutralization coupled with a number of competing equilibria, was derived. The model was qualitatively compared to experiments where pH was measured as a function of time, temperature, and initial acid level. Proton evolution was also examined at room temperature to decouple the effect of ash neutralization from deacetylation. Results The toy model predicts the existence of a steady-state proton concentration dictated by equilibrium constants, initial acetyl groups, and initial added acid. At room temperature, it was found that pH remains essentially constant both at low initial pH and autohydrolysis conditions. Acid is likely in excess of the neutralization potential of the ash, in the former case, and the kinetics of neutralization become exceedingly small in the latter case due to the low proton concentration. Finally, when the hydrolysis reaction proceeded at elevated temperatures, one case of non-monotonic behavior in which the pH initially increased, and then decreased at longer times, was found. This is likely due to the difference in rates between neutralization and deacetylation. Conclusions The model and experimental work demonstrate that the evolution of proton concentration during hydrolysis follows complex behavior that depends upon the acetyl group and ash content of biomass, initial acid levels and temperature. In the limit of excess added acid, pH varies very weakly with time. Below this limit, complex schemes are found primarily related to the selectivity of deacetylation in comparison to neutralization. These findings indicate that a more rigorous approach to models of hemicellulose hydrolysis is needed. Improved models will lead to more efficient acid utilization and facilitate process scale-up.Applied Science, Faculty ofForestry, Faculty ofNon UBCChemical and Biological Engineering, Department ofWood Science, Department ofReviewedFacult

    Sequential fractionation of the lignocellulosic components in hardwood based on steam explosion and hydrotropic extraction

    No full text
    BackgroundThe forest biorefinery plays an important part in the evolving circular bioeconomy due to its capacity to produce a portfolio of bio-based and sustainable fuels, chemicals, and materials. To tap into its true potential, more efficient and environmentally benign methods are needed to fractionate woody biomass into its main components (cellulose, hemicellulose, and lignin) without reducing their potential for valorization. This work presents a sequential fractionation method for hardwood based on steam pretreatment (STEX) and hydrotropic extraction (HEX) with sodium xylene sulfonate. By prehydrolyzing the hemicellulose (STEX) and subsequently extract the lignin from the cellulose fraction (HEX), the major wood components can be recovered in separate process streams and be further valorized.ResultsUsing autocatalyzed STEX and HEX, hemicellulose (> 70%) and lignin (~ 50%) were successfully fractionated and recovered in separate liquid streams and cellulose preserved (99%) and enriched (~ twofold) in the retained solids. Investigation of pretreatment conditions during HEX showed only incremental effects of temperature (150–190 °C) and hold-up time (2–8 h) variations on the fractionation efficiency. The hydrolyzability of the cellulose-rich solids was analyzed and showed higher cellulose conversion when treated with the combined process (47%) than with HEX alone (29%), but was inferior to STEX alone (75%). Protein adsorption and surface structure analysis suggested decreased accessibility due to the collapse of the fibrillose cellulose structure and an increasingly hydrophobic lignin as potential reasons.ConclusionThis work shows the potential of sequential STEX and HEX to fractionate and isolate cellulose, hemicellulose, and a sulfur-free lignin in separate product streams, in an efficient, sustainable, and scalable process
    corecore