39 research outputs found

    Three lateral osteotomy designs for bilateral sagittal split osteotomy: biomechanical evaluation with three-dimensional finite element analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The location of the lateral osteotomy cut during bilateral sagittal split osteotomy (BSSO) varies according to the surgeon's preference, and no consensus has been reached regarding the ideal location from the perspective of biomechanics. The purpose of this study was to evaluate the mechanical behavior of the mandible and screw-miniplate system among three lateral osteotomy designs for BSSO by using three-dimensional (3-D) finite element analysis (FEA).</p> <p>Methods</p> <p>The Trauner-Obwegeser (TO), Obwegeser (Ob), and Obwegeser-Dal Pont (OD) methods were used for BSSO. In all the FEA simulations, the distal segments were advanced by 5 mm. Each model was fixed by using miniplates. These were applied at four different locations, including along Champy's lines, to give 12 different FEA miniplate fixation methods. We examined these models under two different loads.</p> <p>Results</p> <p>The magnitudes of tooth displacement, the maximum bone stress in the vicinity of the screws, and the maximum stress on the screw-miniplate system were less in the OD method than in the Ob and TO methods at all the miniplate locations. In addition, Champy's lines models were less than those at the other miniplate locations.</p> <p>Conclusions</p> <p>The OD method allows greater mechanical stability of the mandible than the other two techniques. Further, miniplates placed along Champy's lines provide greater mechanical advantage than those placed at other locations.</p

    Unilateral condylar hyperplasia: a 3-dimensional quantification of asymmetry

    Get PDF
    Contains fulltext : 117914.pdf (publisher's version ) (Open Access)PURPOSE: Objective quantifications of facial asymmetry in patients with Unilateral Condylar Hyperplasia (UCH) have not yet been described in literature. The aim of this study was to objectively quantify soft-tissue asymmetry in patients with UCH and to compare the findings with a control group using a new method. MATERIAL AND METHODS: Thirty 3D photographs of patients diagnosed with UCH were compared with 30 3D photographs of healthy controls. As UCH presents particularly in the mandible, a new method was used to isolate the lower part of the face to evaluate asymmetry of this part separately. The new method was validated by two observers using 3D photographs of five patients and five controls. RESULTS: A significant difference (0.79 mm) between patients and controls whole face asymmetry was found. Intra- and inter-observer differences of 0.011 mm (-0.034-0.011) and 0.017 mm (-0.007-0.042) respectively were found. These differences are irrelevant in clinical practice. CONCLUSION: After objective quantification, a significant difference was identified in soft-tissue asymmetry between patients with UCH and controls. The method used to isolate mandibular asymmetry was found to be valid and a suitable tool to evaluate facial asymmetry
    corecore