12 research outputs found

    Association between expression of the Bone morphogenetic proteins 2 and 7 in the repair of circumscribed cartilage lesions with clinical outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there is much known about the role of BMPs in cartilage metabolism reliable data about the <it>in vivo </it>regulation in natural and surgically induced cartilage repair are still missing.</p> <p>Methods</p> <p>Lavage fluids of knee joints of 47 patients were collected during surgical therapy. 5 patients had no cartilage lesion and served as a control group, the other 42 patients with circumscribed cartilage defects were treated by microfracturing (19) or by an Autologous Chondrocyte Implantation (23). The concentrations of BMP-2 and BMP-7 were determined by ELISA. The clinical status was evaluated using the IKDC Score prior to and 1 year following the operation.</p> <p>Results</p> <p>High level expression in the control group was found for BMP-2, concentrations of BMP-7 remained below detection levels. No statistical differences could be detected in concentrations of BMP-2 or BMP-7 in the lavage fluids of knees with cartilage lesions compared to the control group. Levels of BMP-7 did not change after surgical cartilage repair, whereas concentrations of BMP-2 statistically significant increased after the intervention (p < 0.001). The clinical outcome following cartilage regenerating surgery increased after 1 year by 29% (p < 0.001). The difference of the IKDC score after 1 year and prior to the operation was used to quantify the degree of improvement following surgery. This difference statistically significant correlated with initial BMP-2 (R = 0.554, p < 0.001) but not BMP-7 (R = 0.031, n.s.) levels in the knee joints.</p> <p>Conclusions</p> <p>BMP-2 seems to play an important role in surgically induced cartilage repair; synovial expression correlates with the clinical outcome.</p

    Altered Trabecular Bone Structure and Delayed Cartilage Degeneration in the Knees of Collagen VI Null Mice

    Get PDF
    Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1−/− mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1−/− mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1+/+ mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1+/+ mice, but not in Col6a1−/− mice. Col6a1−/− mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1+/+mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1−/− mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data

    Articular cartilage repair by genetically modified bone marrow aspirate in sheep

    Get PDF
    Bone marrow presents an attractive option for the treatment of articular cartilage defects as it is readily accessible, it contains mesenchymal progenitor cells that can undergo chondrogenic differentiation and, once coagulated, it provides a natural scaffold that contains the cells within the defect. This study was performed to test whether an abbreviated ex vivo protocol using vector-laden, coagulated bone marrow aspirates for gene delivery to cartilage defects may be feasible for clinical application. Ovine autologous bone marrow was transduced with adenoviral vectors containing cDNA for green fluorescent protein or transforming growth factor (TGF)-beta1. The marrow was allowed to clot forming a gene plug and implanted into partial-thickness defects created on the medial condyle. At 6 months, the quality of articular cartilage repair was evaluated using histological, biochemical and biomechanical parameters. Assessment of repair showed that the groups treated with constructs transplantation contained more cartilage-like tissue than untreated controls. Improved cartilage repair was observed in groups treated with unmodified bone marrow plugs and Ad.TGF-beta1-transduced plugs, but the repaired tissue from TGF-treated defects showed significantly higher amounts of collagen II (P<0.001). The results confirmed that the proposed method is fairly straightforward technique for application in clinical settings. Genetically modified bone marrow clots are sufficient to facilitate articular cartilage repair of partial-thickness defects in vivo. Further studies should focus on selection of transgene combinations that promote more natural healing

    Influence of species and anatomical location on chondrocyte expansion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine articular cartilage is often used to study chondrocytes <it>in vitro</it>. It is difficult to correlate <it>in vitro </it>studies using bovine chondrocytes with <it>in vivo </it>studies using other species such as rabbits and sheep. The aim of this investigation was to study the effect of species, anatomical location and exogenous growth factors on chondrocyte proliferation <it>in vitro</it>.</p> <p>Methods</p> <p>Equine (EQ), bovine (BO) and ovine (OV) articular chondrocytes from metacarpophalangeal (fetlock (F)), shoulder (S) and knee (K) joints were cultured in tissue culture flasks. Growth factors (rh-FGFb: 10 ng/ml; rh-TGFβ: 5 ng/ml) were added to the cultures at days 2 and 4. On day 6, cells were counted and flow cytometry analysis was performed to determine cell size and granularity. A three factor ANOVA with paired Tukey's correction was used for statistical analysis.</p> <p>Results</p> <p>After 6 days in culture, cell numbers had increased in control groups of EQ-F, OV-S, OV-F and BO-F chondrocytes. The addition of rh-FGFb led to the highest increase in cell numbers in the BO-F, followed by EQ-F and OV-S chondrocytes. The addition of rh-TGFβ increased cell numbers in EQ-S and EQ-F chondrocytes, but showed nearly no effect on EQ-K, OV-K, OV-S, OV-F and BO-F chondrocytes. There was an overall difference with the addition of growth factors between the different species and joints.</p> <p>Conclusion</p> <p>Different proliferation profiles of chondrocytes from the various joints were found. Therefore, we recommend performing <it>in vitro </it>studies using the species and site where subsequent <it>in vivo </it>studies are planned.</p
    corecore