20 research outputs found

    Advances in Nondietary Management of Children with Atopic Dermatitis

    Full text link
    This paper discusses recent advances in therapy of atopic dermatitis (AD), excluding those that include dietary management. Some of these therapies are anecdotal, experimental, or somewhat controversial. It is important to emphasize that physicians should not try what is new without first having given standard therapy a long and reasonable chance to succeed. This is important because AD does not last forever, and in many patients, mild disease heals spontaneously.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72467/1/j.1525-1470.1989.tb00820.x.pd

    Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate

    No full text
    The formation of oligodendrocytes (oligodendrogenesis) and myelin is regulated by several neurotrophic factors. Strategies to increase the level of these trophic molecules may facilitate repair in demyelinating conditions, such as multiple sclerosis (MS). Because leukocytes are a source of neurotrophic factors, and as glatiramer acetate (GA) generates T helper 2 (Th2) lymphocytes that are not known to be harmful, we tested the hypothesis that GA regulates oligodendrogenesis and myelin formation. First, we generated GA-reactive Th2 cells and determined that they produced transcripts for neurotrophic factors, including insulin-like growth factor-1 (IGF-1). The conditioned medium from GA-reactive T cells elevated IGF-1 protein and promoted the formation of oligodendrocyte precursor cells (OPCs) from embryonic brainderived forebrain cells in culture. We next subjected mice to lysolecithin-induced demyelination of the spinal cord. At 7 days after the insult, the number of OPCs in the demyelinated dorsal column was higher than that in uninjured controls, and was further increased by the daily s.c. injection with GA. Increased OPC generation by GA was associated temporally with the elevation of IGF-1 and brain-derived neurotrophic factor (BDNF) in the spinal cord. Finally, the resultant remyelination at 28 days was higher in mice treated with GA during the first 7 days of injury compared with vehicle controls. These results indicate that GA promotes oligodendrogenesis and remyelination through mechanisms that involve the elevation of growth factors conducive for repair

    Neutrophil plasticity enables the development of pathological microenvironments: implications for cystic fibrosis airway disease

    No full text

    Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters

    Full text link
    The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na(+)-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide [NTCP]) and SLC10A2 (apical sodium-dependent bile salt transporter [ASBT]) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes
    corecore