222 research outputs found

    Extraordinary lifespans in ants: a test of evolutionary theories of ageing

    Get PDF
    Senescence presents not only a medical problem, but also an evolutionary paradox because it should be opposed by natural selection. Evolutionary hypotheses propose that ageing evolves as the necessary cost of processes increasing early reproductive success(1,2), or because of weaker selection against late-acting mutations(3). A prediction of these hypotheses is that the rate of ageing should increase and the average lifespan decrease as the rate of extrinsic mortality increases(1-7). Alternatively, non-adaptive, purely mechanistic hypotheses invoke damage to DNA, cells, tissues and organs as being the unique cause of senescence and ineluctable death of organisms(8). Here we show that the evolution of eusociality is associated with a 100-fold increase in insect lifespan. Such an increase is predicted by evolutionary theories because termite, bee and ant queens live in colonies that are sheltered and heavily defended against predators. Moreover, a comparison of ants with contrasting life histories also reveals an association between lifespan and extrinsic rate of mortality. These results provide strong support for evolutionary theories of ageing, as purely mechanistic hypotheses of senescence do not propose any association between the rate of extrinsic mortality and lifespans

    Efficacy of weekly teriparatide does not vary by baseline fracture probability calculated using FRAX

    Get PDF
    Summary The aim of this study was to determine the efficacy of once-weekly teriparatide as a function of baseline fracture risk. Treatment with once-weekly teriparatide was associated with a statistically significant 79 % decrease in vertebral fractures, and in the cohort as a whole, efficacy was not related to baseline fracture risk. Introduction Previous studies have suggested that the efficacy of some interventions may be greater in the segment of the population at highest fracture risk as assessed by the FRAX® algorithms. The aim of the present study was to determine whether the antifracture efficacy of weekly teriparatide was dependent on the magnitude of fracture risk. Methods Baseline fracture probabilities (using FRAX) were computed from the primary data of a phase 3 study (TOWER) of the effects of weekly teriparatide in 542 men and postmenopausal women with osteoporosis. The outcome variable comprised morphometric vertebral fractures. Interactions between fracture probability and efficacy were explored by Poisson regression. Results The 10-year probability of major osteoporotic fractures (without BMD) ranged from 7.2 to 42.2 %. FRAX-based hip fracture probabilities ranged from 0.9 to 29.3 %. Treatment with teriparatide was associated with a 79 % (95 % CI 52–91 %) decrease in vertebral fractures assessed by semiquantitative morphometry. Relative risk reductions for the effect of teriparatide on the fracture outcome did not change significantly across the range of fracture probabilities (p = 0.28). In a subgroup analysis of 346 (64 %) participants who had FRAX probabilities calculated with the inclusion of BMD, there was a small but significant interaction (p = 0.028) between efficacy and baseline fracture probability such that high fracture probabilities were associated with lower efficacy. Conclusion Weekly teriparatide significantly decreased the risk of morphometric vertebral fractures in men and postmenopausal women with osteoporosis. Overall, the efficacy of teriparatide was not dependent on the level of fracture risk assessed by FRAX in the cohort as a whole

    Adaptive Melanin Response of the Soil Fungus Aspergillus niger to UV Radiation Stress at “Evolution Canyon”, Mount Carmel, Israel

    Get PDF
    BACKGROUND:Adaptation is an evolutionary process in which traits in a population are tailored by natural selection to better meet the challenges presented by the local environment. The major discussion relating to natural selection concerns the portraying of the cause and effect relationship between a presumably adaptive trait and selection agents generating it. Therefore, it is necessary to identify trait(s) that evolve in direct response to selection, enhancing the organism's fitness. "Evolution Canyon" (EC) in Israel mirrors a microcosmic evolutionary system across life and is ideal to study natural selection and local adaptation under sharply, microclimatically divergent environments. The south-facing, tropical, sunny and xeric "African" slope (AS) receives 200%-800% higher solar radiation than the north-facing, temperate, shady and mesic "European" slope (ES), 200 meters apart. Thus, solar ultraviolet radiation (UVR) is a major selection agent in EC influencing the organism-environment interaction. Melanin is a trait postulated to have evolved for UV-screening in microorganisms. Here we investigate the cause and effect relationship between differential UVR on the opposing slopes of EC and the conidial melanin concentration of the filamentous soil fungus Aspergillus niger. We test the working hypothesis that the AS strains exhibit higher melanin content than strains from the ES resulting in higher UV resistance. METHODOLOGY/PRINCIPAL FINDINGS:We measured conidial melanin concentration of 80 strains from the EC using a spectrophotometer. The results indicated that mean conidial melanin concentration of AS strains were threefold higher than ES strains and the former resisted UVA irradiation better than the latter. Comparisons of melanin in the conidia of A. niger strains from sunny and shady microniches on the predominantly sunny AS and predominantly shady ES indicated that shady conditions on the AS have no influence on the selection on melanin; in contrast, the sunny strains from the ES displayed higher melanin concentrations. CONCLUSIONS/SIGNIFICANCE:We conclude that melanin in A. niger is an adaptive trait against UVR generated by natural selection

    Mating skew in Barbary macaque males: the role of female mating synchrony, female behavior, and male–male coalitions

    Get PDF
    A fundamental question of sexual selection theory concerns the causes and consequences of reproductive skew among males. The priority of access (PoA) model (Altmann, Ann NY Acad Sci 102:338–435, 1962) has been the most influential framework in primates living in permanent, mixed-sex groups, but to date it has only been tested with the appropriate data on female synchrony in a handful of species. In this paper, we used mating data from one large semi-free ranging group of Barbary macaques: (1) to provide the first test of the priority-of-access model in this species, using mating data from 11 sexually active females (including six females that were implanted with a hormonal contraceptive but who showed levels of sexual activity comparable to those of naturally cycling females) and (2) to determine the proximate mechanism(s) underlying male mating skew. Our results show that the fit of the observed distribution of matings with sexually attractive females to predictions of the PoA model was poor, with lower-ranking males mating more than expected. While our work confirms that female mating synchrony sets an upper limit to monopolization by high-ranking individuals, other factors are also important. Coalitionary activity was the main tactic used by males to lower mating skew in the study group. Coalitions were expressed in a strongly age-related fashion and allowed subordinate, post-prime males to increase their mating success by targeting more dominant, prime males. Conversely, females, while mating promiscuously with several males during a given mating cycle, were more likely to initiate their consortships with prime males, thus reducing the overall effectiveness of coalitions. We conclude that high-ranking Barbary macaque males have a limited ability to monopolize mating access, leading to a modest mating skew among them

    Between-group competition elicits within-group cooperation in children

    Get PDF
    Aggressive interactions between groups are frequent in human societies and can bear significant fitness costs and benefits (e.g. death or access to resources). During between-group competitive interactions, more cohesive groups (i.e. groups formed by individuals who cooperate in group defence) should out-perform less cohesive groups, other factors being equal (e.g. group size). The cost/benefit of between-group competition are thought to have driven correlated evolution of traits that favour between-group aggression and within-group cooperation (e.g. parochial altruism). Our aim was to analyse whether the proximate relationship between between-group competition and within-group cooperation is found in 3–10 years old children and the developmental trajectory of such a relationship. We used a large cohort of children (n = 120) and tested whether simulated between-group competition increased within-group cooperation (i.e. how much of a resource children were giving to their group companions) in two experiments. We found greater within-group cooperation when groups of four children were competing with other groups then in the control condition (no between-group competition). Within-group cooperation increased with age. Our study suggests that parochial altruism and in-group/out-group biases emerge early during the course of human development

    Sexually Antagonistic Selection in Human Male Homosexuality

    Get PDF
    Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling ‘Darwinian paradox’. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness), accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait

    Social Structure Predicts Genital Morphology in African Mole-Rats

    Get PDF
    BACKGROUND:African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure. METHODOLOGY/PRINCIPAL FINDINGS:We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate. CONCLUSIONS/SIGNIFICANCE:The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology

    Paternity and Dominance Loss in Male Breeders: The Cost of Helpers in a Cooperatively Breeding Mammal

    Get PDF
    Paternity insurance and dominance tenure length are two important components of male reproductive success, particularly in species where reproduction is highly skewed towards a few individuals. Identifying the factors affecting these two components is crucial to better understand the pattern of variation in reproductive success among males. In social species, the social context (i.e. group size and composition) is likely to influence the ability of males to secure dominance and to monopolize reproduction. Most studies have analyzed the factors affecting paternity insurance and dominance tenure separately. We use a long term data set on Alpine marmots to investigate the effect of the number of subordinate males on both paternity insurance and tenure of dominant males. We show that individuals which are unable to monopolize reproduction in their family groups in the presence of many subordinate males are likely to lose dominance the following year. We also report that dominant males lose body mass in the year they lose both paternity and dominance. Our results suggest that controlling many subordinate males is energetically costly for dominant males, and those unable to support this cost lose the control over both reproduction and dominance. A large number of subordinate males in social groups is therefore costly for dominant males in terms of fitness

    Haldane's rule in the 21st century

    Get PDF
    Haldane's Rule (HR), which states that 'when in the offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous (heterogametic) sex', is one of the most general patterns in speciation biology. We review the literature of the past 15 years and find that among the similar to 85 new studies, many consider taxa that traditionally have not been the focus for HR investigations. The new studies increased to nine, the number of 'phylogenetically independent' groups that comply with HR. They continue to support the dominance and faster-male theories as explanations for HR, although due to increased reliance on indirect data (from, for example, differential introgression of cytoplasmic versus chromosomal loci in natural hybrid zones) unambiguous novel results are rare. We further highlight how research on organisms with sex determination systems different from those traditionally considered may lead to more insight in the underlying causes of HR. In particular, haplodiploid organisms provide opportunities for testing specific predictions of the dominance and faster X chromosome theory, and we present new data that show that the faster-male component of HR is supported in hermaphrodites, suggesting that genes involved in male function may evolve faster than those expressed in the female function. Heredity (2011) 107, 95-102; doi:10.1038/hdy.2010.170; published online 12 January 201

    No behavioural response to kin competition in a lekking species

    Get PDF
    The processes of kin selection and competition may occur simultaneously if limited individual dispersal i.e. population viscosity, is the only cause of the interactions between kin. Therefore, the net indirect benefits of a specific behaviour may largely depend on the existence of mechanisms dampening the fitness costs of competing with kin. In lekking species, males may increase the mating success of their close relatives (and hence gain indirect fitness benefits) because female prefer large leks. At the same time, kin selection may also lead to the evolution of mechanisms that dampen the costs of kin competition. As this mechanism has largely been ignored to date, we used detailed behavioural and genetic data collected in the black grouse Lyrurus tetrix to test whether males mitigate the costs of kin competition through the modulation of their fighting behaviours according to kinship and the avoidance of close relatives when establishing a lek territory. We found that neighbouring males’ fighting behaviour was unrelated to kinship and males did not avoid settling down with close relatives on leks. As males’ current and future mating success are strongly related to their behaviour on the lek (including fighting behaviour and territory position), the costs of kin competition may be negligible relative to the direct benefits of successful male-male contests. As we previously showed that the indirect fitness benefits of group membership were very limited in this black grouse population, these behavioural data support the idea that direct fitness benefits gained by successful male-male encounters likely outbalance any indirect fitness benefits
    corecore