226 research outputs found

    ROR activation by Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer

    Full text link
    AbstractTriple-negative breast cancer (TNBC) is a heterogeneous disease characterized by poor response to standard therapies and therefore unfavorable clinical outcomes. Better understanding of TNBC and new therapeutic strategies are urgently needed. ROR nuclear receptors are multifunctional transcription factors with important roles in circadian pathways and other processes including immunity and tumorigenesis. Nobiletin (NOB) is a natural compound known to display anticancer effects, and our previous studies showed that NOB activates RORs to enhance circadian rhythms and promote physiological fitness in mice. Here, we identified several TNBC cell lines being sensitive to NOB, by itself or in combination. Cell and xenograft experiments showed that NOB significantly inhibited TNBC cell proliferation and motility in vitro and in vivo. ROR loss- and gain-of-function studies showed concordant effects of the NOB–ROR axis on MDA-MB-231 cell growth. Mechanistically, we found that NOB activates ROR binding to the ROR response elements (RRE) of the IκBα promoter, and NOB strongly inhibited p65 nuclear translocation. Consistent with transcriptomic analysis indicating cancer and NF-κB signaling as major pathways altered by NOB, p65-inducible expression abolished NOB effects, illustrating a requisite role of NF-κB suppression mediating the anti-TNBC effect of NOB. Finally, in vivo mouse xenograft studies showed that NOB enhanced the antitumor efficacy in mammary fat pad implanted TNBC, as a single agent or in combination with the chemotherapy agent Docetaxel. Together, our study highlights an anti-TNBC mechanism of ROR-NOB via suppression of NF-κB signaling, suggesting novel preventive and chemotherapeutic strategies against this devastating disease.</jats:p

    Maize haplotype with a helitron-amplified cytidine deaminase gene copy

    Get PDF
    BACKGROUND: Genetic maps are based on recombination of orthologous gene sequences between different strains of the same species. Therefore, it was unexpected to find extensive non-collinearity of genes between different inbred strains of maize. Interestingly, disruption of gene collinearity can be caused among others by a rolling circle-type copy and paste mechanism facilitated by Helitrons. However, understanding the role of this type of gene amplification has been hampered by the lack of finding intact gene sequences within Helitrons. RESULTS: By aligning two haplotypes of the z1C1 locus of maize we found a Helitron that contains two genes, one encoding a putative cytidine deaminase and one a hypothetical protein with part of a 40S ribosomal protein. The cytidine deaminase gene, called ZmCDA3, has been copied from the ZmCDA1 gene on maize chromosome 7 about 4.5 million years ago (mya) after maize was formed by whole-genome duplication from two progenitors. Inbred lines contain gene copies of both progenitors, the ZmCDA1 and ZmCDA2 genes. Both genes diverged when the progenitors of maize split and are derived from the same progenitor as the rice OsCDA1 gene. The ZmCDA1 and ZmCDA2 genes are both transcribed in leaf and seed tissue, but transcripts of the paralogous ZmCDA3 gene have not been found yet. Based on their protein structure the maize CDA genes encode a nucleoside deaminase that is found in bacterial systems and is distinct from the mammalian RNA and/or DNA modifying enzymes. CONCLUSION: The conservation of a paralogous gene sequence encoding a cytidine deaminase gene over 4.5 million years suggests that Helitrons could add functional gene sequences to new chromosomal positions and thereby create new haplotypes. However, the function of such paralogous gene copies cannot be essential because they are not present in all maize strains. However, it is interesting to note that maize hybrids can outperform their inbred parents. Therefore, certain haplotypes may function only in combination with other haplotypes or under specialized environmental conditions

    A Single-Stranded DNA Aptamer That Selectively Binds to Staphylococcus aureus Enterotoxin B

    Get PDF
    The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APTSEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide

    Granulocyte-colony stimulating factor for stroke treatment: mechanisms of action and efficacy in preclinical studies

    Get PDF
    G-CSF is widely employed for the treatment of chemotherapy-induced neutropenia. Recently, neuroprotective effects of G-CSF in animal stroke models were discovered including infarct size reduction and enhancement of functional recovery. The underlying mechanisms of action of G-CSF in ischemia appear to be a direct anti-apoptotic activity in neurons and a neurogenesis inducing capacity. Additional effects may be based on the stimulation of new blood-vessel formation, the stimulation of immunocompetence and -modulation as well as on bone marrow mobilization. In addition to a discussion of these mechanisms, we will review the available preclinical studies and analyze their impact on the overall efficacy of G-CSF in experimental stroke

    The Parental Non-Equivalence of Imprinting Control Regions during Mammalian Development and Evolution

    Get PDF
    In mammals, imprinted gene expression results from the sex-specific methylation of imprinted control regions (ICRs) in the parental germlines. Imprinting is linked to therian reproduction, that is, the placenta and imprinting emerged at roughly the same time and potentially co-evolved. We assessed the transcriptome-wide and ontology effect of maternally versus paternally methylated ICRs at the developmental stage of setting of the chorioallantoic placenta in the mouse (8.5dpc), using two models of imprinting deficiency including completely imprint-free embryos. Paternal and maternal imprints have a similar quantitative impact on the embryonic transcriptome. However, transcriptional effects of maternal ICRs are qualitatively focused on the fetal-maternal interface, while paternal ICRs weakly affect non-convergent biological processes, with little consequence for viability at 8.5dpc. Moreover, genes regulated by maternal ICRs indirectly influence genes regulated by paternal ICRs, while the reverse is not observed. The functional dominance of maternal imprints over early embryonic development is potentially linked to selection pressures favoring methylation-dependent control of maternal over paternal ICRs. We previously hypothesized that the different methylation histories of ICRs in the maternal versus the paternal germlines may have put paternal ICRs under higher mutational pressure to lose CpGs by deamination. Using comparative genomics of 17 extant mammalian species, we show here that, while ICRs in general have been constrained to maintain more CpGs than non-imprinted sequences, the rate of CpG loss at paternal ICRs has indeed been higher than at maternal ICRs during evolution. In fact, maternal ICRs, which have the characteristics of CpG-rich promoters, have gained CpGs compared to non-imprinted CpG-rich promoters. Thus, the numerical and, during early embryonic development, functional dominance of maternal ICRs can be explained as the consequence of two orthogonal evolutionary forces: pressure to tightly regulate genes affecting the fetal-maternal interface and pressure to avoid the mutagenic environment of the paternal germline

    SARS Coronavirus 3b Accessory Protein Modulates Transcriptional Activity of RUNX1b

    Get PDF
    BACKGROUND: The causative agent of severe acute respiratory syndrome, SARS coronavirus (SARS-CoV) genome encodes several unique group specific accessory proteins with unknown functions. Among them, accessory protein 3b (also known as ORF4) was lately identified as one of the viral interferon antagonist. Recently our lab uncovered a new role for 3b in upregulation of AP-1 transcriptional activity and its downstream genes. Thus, we believe that 3b might play an important role in SARS-CoV pathogenesis and therefore is of considerable interest. The current study aims at identifying novel host cellular interactors of the 3b protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, using yeast two-hybrid and co-immunoprecipitation techniques, we have identified a host transcription factor RUNX1b (Runt related transcription factor, isoform b) as a novel interacting partner for SARS-CoV 3b protein. Chromatin immunoprecipitaion (ChIP) and reporter gene assays in 3b expressing jurkat cells showed recruitment of 3b on the RUNX1 binding element that led to an increase in RUNX1b transactivation potential on the IL2 promoter. Kinase assay and pharmacological inhibitor treatment implied that 3b also affect RUNX1b transcriptional activity by regulating its ERK dependent phosphorylation levels. Additionally, mRNA levels of MIP-1α, a RUNX1b target gene upregulated in SARS-CoV infected monocyte-derived dendritic cells, were found to be elevated in 3b expressing U937 monocyte cells. CONCLUSIONS/SIGNIFICANCE: These results unveil a novel interaction of SARS-CoV 3b with the host factor, RUNX1b, and speculate its physiological relevance in upregulating cytokines and chemokine levels in state of SARS virus infection

    Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species

    Get PDF
    The phytohormone abscisic acid (ABA) and reactive oxygen species (ROS) play critical roles in mediating abiotic stress responses in plants. It is well known that ABA is involved in the modulation of ROS levels by regulating ROS-producing and ROS-scavenging genes, but the molecular mechanisms underlying this regulation are poorly understood. Here we show that the expression of maize ABP9 gene, which encodes a bZIP transcription factor capable of binding to the ABRE2 motif in the maize Cat1 promoter, is induced by ABA, H2O2, drought and salt. Constitutive expression of ABP9 in transgenic Arabidopsis leads to remarkably enhanced tolerance to multiple stresses including drought, high salt, freezing temperature and oxidative stresses. ABP9 expressing Arabidopsis plants also exhibit increased sensitivity to exogenously applied ABA during seed germination, root growth and stomatal closure and improved water-conserving capacity. Moreover, constitutive expression of ABP9 causes reduced cellular levels of ROS, alleviated oxidative damage and reduced cell death, accompanied by elevated expression of many stress/ABA responsive genes including those for scavenging and regulating ROS. Taken together, these results suggest that ABP9 may play a pivotal role in plant tolerance to abiotic stresses by fine tuning ABA signaling and control of ROS accumulation

    A Novel Core Genome-Encoded Superantigen Contributes to Lethality of Community-Associated MRSA Necrotizing Pneumonia

    Get PDF
    Bacterial superantigens (SAg) stimulate T-cell hyper-activation resulting in immune modulation and severe systemic illnesses such as Staphylococcus aureus toxic shock syndrome. However, all known S. aureus SAgs are encoded by mobile genetic elements and are made by only a proportion of strains. Here, we report the discovery of a novel SAg staphylococcal enterotoxin-like toxin X (SElX) encoded in the core genome of 95% of phylogenetically diverse S. aureus strains from human and animal infections, including the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 clone. SElX has a unique predicted structure characterized by a truncated SAg B-domain, but exhibits the characteristic biological activities of a SAg including Vβ-specific T-cell mitogenicity, pyrogenicity and endotoxin enhancement. In addition, SElX is expressed by clinical isolates in vitro, and during human, bovine, and ovine infections, consistent with a broad role in S. aureus infections of multiple host species. Phylogenetic analysis suggests that the selx gene was acquired horizontally by a progenitor of the S. aureus species, followed by allelic diversification by point mutation and assortative recombination resulting in at least 17 different alleles among the major pathogenic clones. Of note, SElX variants made by human- or ruminant-specific S. aureus clones demonstrated overlapping but distinct Vβ activation profiles for human and bovine lymphocytes, indicating functional diversification of SElX in different host species. Importantly, SElX made by CA-MRSA USA300 contributed to lethality in a rabbit model of necrotizing pneumonia revealing a novel virulence determinant of CA-MRSA disease pathogenesis. Taken together, we report the discovery and characterization of a unique core genome-encoded superantigen, providing new insights into the evolution of pathogenic S. aureus and the molecular basis for severe infections caused by the CA-MRSA USA300 epidemic clone

    Transcriptome-Wide Identification of Novel Imprinted Genes in Neonatal Mouse Brain

    Get PDF
    Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting
    corecore