33 research outputs found

    ANCA-associated vasculitis.

    Get PDF
    The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are a group of disorders involving severe, systemic, small-vessel vasculitis and are characterized by the development of autoantibodies to the neutrophil proteins leukocyte proteinase 3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). The three AAV subgroups, namely granulomatosis with polyangiitis (GPA), microscopic polyangiitis and eosinophilic GPA (EGPA), are defined according to clinical features. However, genetic and other clinical findings suggest that these clinical syndromes may be better classified as PR3-positive AAV (PR3-AAV), MPO-positive AAV (MPO-AAV) and, for EGPA, by the presence or absence of ANCA (ANCA+ or ANCA-, respectively). Although any tissue can be involved in AAV, the upper and lower respiratory tract and kidneys are most commonly and severely affected. AAVs have a complex and unique pathogenesis, with evidence for a loss of tolerance to neutrophil proteins, which leads to ANCA-mediated neutrophil activation, recruitment and injury, with effector T cells also involved. Without therapy, prognosis is poor but treatments, typically immunosuppressants, have improved survival, albeit with considerable morbidity from glucocorticoids and other immunosuppressive medications. Current challenges include improving the measures of disease activity and risk of relapse, uncertainty about optimal therapy duration and a need for targeted therapies with fewer adverse effects. Meeting these challenges requires a more detailed knowledge of the fundamental biology of AAV as well as cooperative international research and clinical trials with meaningful input from patients

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Adaptation to non-invasive continuous blood pressure monitoring

    No full text

    Adherence to chemoprophylaxis and Plasmodium falciparum anti-circumsporozoite seroconversion in a prospective cohort study of Dutch short-term travelers

    Get PDF
    Contains fulltext : 117478.pdf (publisher's version ) (Open Access)BACKGROUND: We conducted a prospective study in a cohort of short-term travelers assessing the incidence rate of anti-circumsporozoite seroconversion, adherence to chemoprophylaxis, symptoms of malaria during travel, and malaria treatment abroad. METHODS: Adults were recruited from the travel clinic of the Public Health Service Amsterdam. They kept a structured daily travel diary and donated blood samples before and after travel. Blood samples were serologically tested for the presence of Plasmodium falciparum anti-circumsporozoite antibodies. RESULTS: Overall, the incidence rate (IR) of anti-circumsporozoite seroconversion was 0.8 per 100 person-months. Of 945 travelers, 620 (66%) visited high-endemic areas and were advised about both chemoprophylaxis and preventive measures against mosquito bites. Most subjects (520/620 = 84%) took at least 75% of recommended prophylaxis during travel. Travel to Africa, use of mefloquine, travel duration of 14-29 days in endemic areas, and concurrent use of DEET (N,N-diethyl-meta-toluamide) were associated with good adherence practices. Four travelers without fever seroconverted, becoming anti-circumsporozoite antibody-positive. All four had been adherent to chemoprophylaxis; two visited Africa, one Suriname, one India. Ten subjects with fever were tested for malaria while abroad and of these, three received treatment. All three were adherent to chemoprophylaxis and tested negative for anti-circumsporozoite antibodies. CONCLUSION: Travel to Africa, using mefloquine, travel duration of 14-29 days in endemic areas, and use of DEET were associated with good adherence to chemoprophylaxis. The combination of chemoprophylaxis and other preventive measures were sufficient to protect seroconverting travelers from clinical malaria. Travelers who were treated for malaria abroad did not seroconvert

    Atovaquone-proguanil versus mefloquine for malaria prophylaxis in nonimmune travelers: results from a randomized, double-blind study.

    No full text
    Concerns about the tolerability of mefloquine highlight the need for new drugs to prevent malaria. Atovaquone-proguanil (Malarone; GlaxoSmithKline) was safe and effective for prevention of falciparum malaria in lifelong residents of malaria-endemic countries, but experience in nonimmune people is limited. In a randomized, double-blind study, nonimmune travelers received malaria prophylaxis with atovaquone-proguanil (493 subjects) or mefloquine (483 subjects). Information about adverse events (AEs) and potential episodes of malaria was obtained 7, 28, and 60 days after travel. AEs were reported by an equivalent proportion of subjects who had received atovaquone-proguanil or mefloquine (71.4% versus 67.3%; difference, 4.1%; 95% confidence interval, -1.71 to 9.9). Subjects who received atovaquone-proguanil had fewer treatment-related neuropsychiatric AEs (14% versus 29%; P=.001), fewer AEs of moderate or severe intensity (10% versus 19%; P=.001), and fewer AEs that caused prophylaxis to be discontinued (1.2% versus 5.0%; P=.001), compared with subjects who received melfoquine. No confirmed diagnoses of malaria occurred in either group. Atovaquone-proguanil was better tolerated than was mefloquine, and it was similarly effective for malaria prophylaxis in nonimmune travelers
    corecore