64 research outputs found

    Attachment and Entry of Chlamydia Have Distinct Requirements for Host Protein Disulfide Isomerase

    Get PDF
    Chlamydia is an obligate intracellular pathogen that causes a wide range of diseases in humans. Attachment and entry are key processes in infectivity and subsequent pathogenesis of Chlamydia, yet the mechanisms governing these interactions are unknown. It was recently shown that a cell line, CHO6, that is resistant to attachment, and thus infectivity, of multiple Chlamydia species has a defect in protein disulfide isomerase (PDI) N–terminal signal sequence processing. Ectopic expression of PDI in CHO6 cells led to restoration of Chlamydia attachment and infectivity; however, the mechanism leading to this recovery was not ascertained. To advance our understanding of the role of PDI in Chlamydia infection, we used RNA interference to establish that cellular PDI is essential for bacterial attachment to cells, making PDI the only host protein identified as necessary for attachment of multiple species of Chlamydia. Genetic complementation and PDI-specific inhibitors were used to determine that cell surface PDI enzymatic activity is required for bacterial entry into cells, but enzymatic function was not required for bacterial attachment. We further determined that it is a PDI-mediated reduction at the cell surface that triggers bacterial uptake. While PDI is necessary for Chlamydia attachment to cells, the bacteria do not appear to utilize plasma membrane–associated PDI as a receptor, suggesting that Chlamydia binds a cell surface protein that requires structural association with PDI. Our findings demonstrate that PDI has two essential and independent roles in the process of chlamydial infectivity: it is structurally required for chlamydial attachment, and the thiol-mediated oxido-reductive function of PDI is necessary for entry

    Global Transcriptional Analysis of Spontaneous Sakacin P-Resistant Mutant Strains of Listeria monocytogenes during Growth on Different Sugars

    Get PDF
    Subclass IIa bacteriocins have strong antilisterial activity and can control the growth of Listeria monocytogenes in food. However, L. monocytogenes may develop resistance towards such bacteriocins. In this follow-up study, the transcriptomes of a high level (L502-1) and a low level (L502-6) spontaneous sakacin P-resistant mutant strain of L. monocytogenes were compared to the wild-type (L502). The growth of the resistant strains was reduced on mannose but not affected on cellobiose and the transcriptomics was performed during growth on these sugars. The mannose phosphotransferase system (PTS) encoded by the mptACD operon (mpt) is known for transporting mannose and also act as a receptor to class IIa bacteriocins. The mpt was repressed in L502-1 and this is in accordance with abolition of the bacteriocin receptor with resistance to class IIa bacteriocins. In contrast, the mpt was induced in L502-6. Despite the induction of the mpt, L502-6 showed 1,000 times more resistance phenotype and reduced growth on mannose suggesting the mannose-PTS may not be functional in L502-6. The microarray data suggests the presence of other transcriptional responses that may be linked to the sakacin P resistance phenotype particularly in L502-6. Most of commonly regulated genes encode proteins involved in transport and energy metabolism. The resistant strains displayed shift in general carbon catabolite control possibly mediated by the mpt. Our data suggest that the resistant strains may have a reduced virulence potential. Growth sugar- and mutant-specific responses were also revealed. The two resistant strains also displayed difference in stability of the sakacin P resistance phenotype, growth in the presence of both the lytic bacteriophage P100 and activated charcoal. Taken together, the present study showed that a single time exposure to the class IIa bacteriocin sakacin P may elicit contrasting phenotypic and transcriptome responses in L. monocytogenes possibly through regulation of the mpt

    5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-Îł-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation.</p> <p>Methods</p> <p>To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment.</p> <p>Results</p> <p>We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery.</p> <p>Conclusion</p> <p>ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests eicosanoids as potential therapeutic modulators of inflammation that act through a novel target.</p

    Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel

    Get PDF

    Factors affecting the success of early salt-marsh colonizers: seed availability rather than site suitability and dispersal traits

    Get PDF
    We evaluated the process of salt-marsh colonization in early successional stages of salt-marsh restoration and investigated how the sequence of species establishment related to different success factors. Vegetation data were collected by permanent plots from the restoration site and adjacent, reference salt marshes during three consecutive periods. Seed length, width and mass were used as dispersal traits, and Ellenberg moisture, salinity and nutrient indices as indicators of site suitability. Seed production in the reference site and seed bank in the restoration site were also investigated. The establishment of salt-marsh species within the restoration site was rapid (less than 5 years). The cover of plant species was not correlated between the restored and the reference sites at the first year of restoration, but this correlation was significant during the following years. Seed availability was more important in explaining the sequence of species establishment than salt and nutrient-limitation tolerance. The first colonizers are known as massive seed producers, with shorter seed length and lower seed mass, which probably increased buoyancy. Among dispersal and site traits, seed length and mass, and in a less extent salinity and nutrients, indicated a relationship with new colonizers. Despite few species have not (yet) appeared in vegetation and seed bank in the restoration site, the existence of an existing salt marsh adjacent to the restoration site is shown to be vital for fast colonization of newly created intertidal areas
    • …
    corecore