61 research outputs found

    Gait kinematic analysis in patients with a mild form of central cord syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed.</p> <p>Methods</p> <p>Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion - ROM) were compared between the two groups walking at similar speeds.</p> <p>Results</p> <p>The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p < 0.05). Hip abduction and knee flexion at initial contact, as well as minimal knee flexion at stance, were larger in the CCS group (p < 0.05). However, the range of knee and ankle motion in the sagittal plane was greater in the CG group (p < 0.05). The maximal ankle plantar-flexion values in stance phase and at toe off were larger in the CG (p < 0.05).</p> <p>Conclusions</p> <p>The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.</p

    Effectiveness of automated locomotor training in patients with acute incomplete spinal cord injury: A randomized controlled multicenter trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large proportion of patients with spinal cord injury (SCI) regain ambulatory function. However, during the first 3 months most of the patients are not able to walk unsupported. To enable ambulatory training at such an early stage the body weight is partially relieved and the leg movements are assisted by two therapists. A more recent approach is the application of robotic based assistance which allows for longer training duration. From motor learning science and studies including patients with stroke, it is known that training effects depend on the duration of the training. Longer trainings result in a better walking function. The aim of the present study is to evaluate if prolonged robot assisted walking training leads to a better walking outcome in patients with incomplete SCI and whether such training is feasible or has undesirable effects.</p> <p>Methods/Design</p> <p>Patients from multiple sites with a subacute incomplete SCI and who are not able to walk independently will be randomized to either standard training (3-5 sessions per week, session duration maximum 25 minutes) or an intensive training (3-5 sessions per week, session duration minimum 50 minutes). After 8 weeks of training and 4 months later the walking ability, the occurrence of adverse events and the perceived rate of exertion as well as the patients' impression of change will be compared between groups.</p> <p>Trial registration</p> <p>This study is registered at clinicaltrials.gov, identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01147185">NCT01147185</a>.</p

    Repeatability of Corticospinal and Spinal Measures during Lengthening and Shortening Contractions in the Human Tibialis Anterior Muscle

    Get PDF
    Elements of the human central nervous system (CNS) constantly oscillate. In addition, there are also methodological factors and changes in muscle mechanics during dynamic muscle contractions that threaten the stability and consistency of transcranial magnetic stimulation (TMS) and perpherial nerve stimulation (PNS) measures

    Single Collateral Reconstructions Reveal Distinct Phases of Corticospinal Remodeling after Spinal Cord Injury

    Get PDF
    Injuries to the spinal cord often result in severe functional deficits that, in case of incomplete injuries, can be partially compensated by axonal remodeling. The corticospinal tract (CST), for example, responds to a thoracic transection with the formation of an intraspinal detour circuit. The key step for the formation of the detour circuit is the sprouting of new CST collaterals in the cervical spinal cord that contact local interneurons. How individual collaterals are formed and refined over time is incompletely understood

    Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury

    Full text link
    STUDY DESIGN: Retrospective, longitudinal analysis of motor recovery data from individuals with cervical (C4-C7) sensorimotor complete spinal cord injury (SCI) according to the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). OBJECTIVES: To analyze the extent and patterns of spontaneous motor recovery over the first year after traumatic cervical sensorimotor complete SCI. METHODS: Datasets from the European multicenter study about SCI (EMSCI) and the Sygen randomized clinical trial were examined for conversion of American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade, change in upper extremity motor score (UEMS) or motor level, as well as relationships between these measures. RESULTS: There were no overall differences between the EMSCI and Sygen datasets in motor recovery patterns. After 1 year, up to 70% of subjects spontaneously recovered at least one motor level, but only 30% recovered two or more motor levels, with lesser values at intermediate time points. AIS grade conversion did not significantly influence motor level changes. At 1 year, the average spontaneous improvement in bilateral UEMS was 10-11 motor points. There was only moderate relationship between a change in UEMS and a change in cervical motor level (r(2)=0.30, P<0.05). Regardless of initial cervical motor level, most individuals recover a similar number of motor points or motor levels. CONCLUSION: Careful tracking of cervical motor recovery outcomes may provide the necessary sensitivity and accuracy to reliably detect a subtle, but meaningful treatment effect after sensorimotor complete cervical SCI. The distribution of the UEMS change may be more important functionally than the total UEMS recovered
    corecore