5 research outputs found

    Adverse environmental conditions influence age-related innate immune responsiveness

    Get PDF
    BACKGROUND-: The innate immune system plays an important role in the recognition and induction of protective responses against infectious pathogens, whilst there is increasing evidence for a role in mediating chronic inflammatory diseases at older age. Despite indications that environmental conditions can influence the senescence process of the adaptive immune system, it is not known whether the same holds true for the innate immune system. Therefore we studied whether age-related innate immune responses are similar or differ between populations living under very diverse environmental conditions. METHODS-: We compared cross-sectional age-related changes in ex vivo innate cytokine responses in a population living under affluent conditions in the Netherlands (age 20–68 years old, n = 304) and a population living under adverse environmental conditions in Ghana (age 23–95 years old, n = 562). RESULTS-: We found a significant decrease in LPS-induced Interleukin (IL)-10 and Tumor Necrosis Factor (TNF) production with age in the Dutch population. In Ghana a similar age-related decline in IL-10 responses to LPS, as well as to zymosan, or LPS plus zymosan, was observed. TNF production, however, did not show an age-associated decline, but increased significantly with age in response to co-stimulation with LPS and zymosan. CONCLUSION-: We conclude that the decline in innate cytokine responses is an intrinsic ageing phenomenon, while pathogen exposure and/or selective survival drive pro-inflammatory responses under adverse living conditions

    Preparing for Life: Plasma Proteome Changes and Immune System Development During the First Week of Human Life.

    Get PDF
    Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases

    Epidemiology of Concomitant Infection Due to Loa loa and Mansonella perstans in Gabon

    Get PDF
    Loa loa and Mansonella perstans are blood filarial parasites, endemic in the central and western African forest block, and transmitted by chrysops and culicoides flies, respectively. Loa loa is pathogenic and represents a major obstacle to the control of co-endemic filariae. Treatment of individuals with >8000 Loa loa microfilariae/ml can result in severe adverse reactions. M. perstans is prevalent in the tropics, with undefined clinical symptoms. We screened 4392 individuals for these infections in 212 Gabonese villages. The overall prevalence rates were 22.4% for Loa loa microfilariae, 10.2% for M. perstans, and 3.2% for mixed infection. These rates varied across the different ecosystems: forest, savannah, Lakeland, river (Ogouée), and equator. A correlation was found between the prevalence and intensity of microfilariae, while a negative relationship was found between clinical symptoms (pruritis, Calabar swelling) and the prevalence of Loa loa microfilaremia. This study confirms the spatial uniformity of the relationship between parasitological indices, and provides a map and baseline data for implementation of mass chemotherapy for these infections

    Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren.

    Get PDF
    BACKGROUND: Several studies have shown an inverse association between helminth infections and atopy, but none have clearly established that the pathogens themselves, rather than other associated factors, cause the suppression of atopy. To show a direct link, prospective intervention studies are required. METHODS: A randomized, controlled trial was performed to study whether repeated anthelminthic treatment results in increased allergic sensitivity to house dust mites (HDMs) in chronically infected children. The trial population consisted of 317 Gabonese schoolchildren with a high prevalence of intestinal helminths. Intervention consisted of treatment every 3 months with praziquantel and mebendazole and with placebo in the control group. Follow-up lasted 30 months: at 6-month intervals, skin-test sensitivity to mites, helminth infection status, and levels of total IgE were determined. RESULTS: Treatment resulted in a significant increase in the rate of developing skin sensitivity to HDMs (hazard ratio, 2.51; 95% confidence interval, 1.85-3.41), which was mediated, in part, by reductions in Ascaris and/or Trichuris infections. Levels of total IgE were reduced, but this did not mediate the effect of treatment on skin-test reactivity. CONCLUSIONS: Anthelminthic treatment of chronically infected children results in increased atopic reactivity, which indicates that helminths directly suppress allergic reactions
    corecore