551 research outputs found

    Oxygen Degradation in Mesoporous Al<inf>2</inf>O<inf>3</inf>/CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3-</inf><inf>x</inf>Cl<inf>x</inf> Perovskite Solar Cells: Kinetics and Mechanisms

    Get PDF
    The rapid pace of development for hybrid perovskite photovoltaics has recently resulted in promising figures of merit being obtained with regard to device stability. Rather than relying upon expensive barrier materials, realizing market-competitive lifetimes is likely to require the development of intrinsically stable devices, and to this end accelerated aging tests can help identify degradation mechanisms that arise over the long term. Here, oxygen-induced degradation of archetypal perovskite solar cells under operation is observed, even in dry conditions. With prolonged aging, this process ultimately drives decomposition of the perovskite. It is deduced that this is related to charge build-up in the perovskite layer, and it is shown that by efficiently extracting charge this degradation can be mitigated. The results confirm the importance of high charge-extraction efficiency in maximizing the tolerance of perovskite solar cells to oxygen.This work was supported by SABIC and by the EPSRC, including by the Supergen Supersolar Consortium (EP/J017361/1) and the European Union Seventh Framework Program [FP7 2007-2003] under grant agreement 604032 of the MESO project. GE is supported by the EPSRC and Oxford Photovoltaics Ltd. through a Nanotechnology KTN CASE award. JW acknowledges the Swire Educational Trust for supporting his D.Phil. study at Oxford. We thank Sian Dutton (University of Cambridge) for access to XRD facilities and Felix Deschler (University of Cambridge) for helpful discussions.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aenm.20160001

    Inorganic caesium lead iodide perovskite solar cells

    Get PDF
    The vast majority of perovskite solar cell research has focused on organic–inorganic lead trihalide perovskites. Herein, we present working inorganic CsPbI3 perovskite solar cells for the first time. CsPbI3 normally resides in a yellow non-perovskite phase at room temperature, but by careful processing control and development of a low-temperature phase transition route we have stabilised the material in the black perovskite phase at room temperature. As such, we have fabricated solar cell devices in a variety of architectures, with current–voltage curve measured efficiency up to 2.9% for a planar heterojunction architecture, and stabilised power conversion efficiency of 1.7%. The well-functioning planar junction devices demonstrate long-range electron and hole transport in this material. Importantly, this work identifies that the organic cation is not essential, but simply a convenience for forming lead triiodide perovskites with good photovoltaic properties. We additionally observe significant rate-dependent current–voltage hysteresis in CsPbI3 devices, despite the absence of the organic polar molecule previously thought to be a candidate for inducing hysteresis via ferroelectric polarisation. Due to its space group, CsPbI3 cannot be a ferroelectric material, and thus we can conclude that ferroelectricity is not required to explain current–voltage hysteresis in perovskite solar cells. Our report of working inorganic perovskite solar cells paves the way for further developments likely to lead to much more thermally stable perovskite solar cells and other optoelectronic devices

    Electroluminescence from Organometallic Lead Halide Perovskite-Conjugated Polymer Diodes

    Get PDF
    Organometallic lead perovskite-based solar cells can be converted to light-emitting diodes by engineering the current density. Diodes are fabricated with adjacent perovskite and conjugated polymer layers using orthogonal solvents. Under forward bias, these devices show simultaneous emission from both the luminescent conjugated polymer and the perovskite, providing direct information on electron and hole recombination as a function of device architecture and bias voltage.We gratefully acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC). A.K. acknowledges NRF-Singapore for a scholarship.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aelm.20150000

    The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory

    Full text link
    © The Royal Society of Chemistry 2018. Hybrid organic-inorganic perovskites (HOIPs) have recently emerged as highly promising solution-processable materials for photovoltaic (PV) and other optoelectronic devices. HOIPs represent a broad family of materials with properties highly tuneable by the ions that make up the perovskite structure as well as their multiple combinations. Interestingly, recent high-efficiency PV devices using HOIPs with substantially improved long-term stability have used combinations of different ionic compositions. The structural dynamics of these systems are unique for semiconducting materials and are currently argued to be central to HOIPs stability and charge-transport properties. Here, we studied the impact of ionic composition on phonon speeds of HOIPs from Brillouin spectroscopy experiments and density functional theory calculations for FAPbBr3, MAPbBr3, MAPbCl3, and the mixed halide MAPbBr1.25Cl1.75. Our results show that the acoustic phonon speeds can be strongly modified by ionic composition, which we explain by analysing the lead-halide sublattice in detail. The vibrational properties of HOIPs are therefore tuneable by using targeted ionic compositions in the perovskite structure. This tuning can be rationalized by non-trivial effects, for example, considering the influence of the shape and dipole moment of organic cations. This has an important implications for further improvements in the stability and charge-transport properties of these systems

    Understanding the Performance-Limiting Factors of Cs₂AgBiBr₆ Double-Perovskite Solar Cells

    Get PDF
    Double perovskites have recently emerged as possible alternatives to lead-based halide perovskites for photovoltaic applications. In particular, Understanding the Performance-Limiting Factors of Cs₂AgBiBr₆ Double-Perovskite Solar Cells has been the subject of several studies because of its environmental stability, low toxicity, and its promising optoelectronic features. Despite these encouraging features, the performances of solar cells based on this double perovskite are still low, suggesting severe limitations that need to be addressed. In this work we combine experimental and theoretical studies to show that the short electron diffusion length is one of the major causes for the limited performance of Cs₂AgBiBr₆ solar cells. Using EQE measurements on semitransparent Cs₂AgBiBr₆ solar cells we estimate the electron diffusion length to be only 30 nm and corroborated this value by terahertz spectroscopy. By using photothermal deflection spectroscopy and surface photovoltage measurements we correlate the limited electron diffusion length with a high density of electron traps. Our findings highlight important faults affecting this double perovskite, showing the challenges to overcome and hinting to a possible path to improve the efficiency of Cs₂AgBiBr₆ solar cells

    Pore Filling of Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells Determined Via Optical Reflectometry

    Get PDF
    A simple strategy is presented to determine the pore-filling fraction of the hole-conductor 2,2-7,7-tetrakis-N,N-di-pmethoxyphenylamine-9,9-spirobifluorene (spiro-OMeTAD) into mesoporous photoanodes in solid-state dye-sensitized solar cells (ss-DSCs). Based on refractive index determination by the film’s reflectance spectra and using effective medium approximations the volume fractions of the constituent materials can be extracted, hence the pore-filling fraction quantified. This non-destructive method can be used with complete films and does not require detailed model assumptions. Pore-filling fractions of up to 80% are estimated for optimized solid-state DSC photoanodes, which is higher than that previously estimated by indirect methods. Additionally, transport and recombination lifetimes as a function of the pore-filling fraction are determined using photovoltage and photocurrent decay measurements. While extended electron lifetimes are observed with increasing pore-filling fractions, no trend is found in the transport kinetics. The data suggest that a pore-filling fraction of greater than 60% is necessary to achieve optimized performance in ss-DSCs. This degree of pore-filling is even achieved in 5 mu m thick mesoporous photoanodes. It is concluded that pore-filling is not a limiting factor in the fabrication of “thick” ss-DSCs with spiro-OMeTAD as the hole-conductor

    Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    Get PDF
    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum efficiencies of polycrystalline perovskite films from 1% to 89%, with carrier lifetimes of 32 μs and diffusion lengths of 77 μm, comparable with perovskite single crystals. Remarkably, the surface recombination velocity of holes in the treated films is 0.4 cm/s, approaching the values for fully passivated crystalline silicon, which has the lowest values for any semiconductor to date. The enhancements translate to solar cell power-conversion efficiencies of 19.2%, with a near-instant rise to stabilized power output, consistent with suppression of ion migration. We propose a mechanism in which light creates superoxide species from oxygen that remove shallow surface states. The work reveals an industrially scalable post-treatment capable of producing state-of-the-art semiconducting films.S.D.S. has received funding from the European Union's Seventh Framework Program (Marie Curie Actions) under REA grant number PIOF-GA-2013-622630. This work made use of the Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation (NSF) under award number MDR – 1419807. R.B. acknowledges support from the MIT Undergraduate Research Opportunities Program (UROP). A.O. acknowledges support from the NSF under grant no. 1605406 (EP/L000202). D.G. acknowledges the China Scholarship Council for funding, file no. 201504910812. The authors acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) under EP/P02484X/1 and the Programme Grant EP/M005143/1. M.S.I. and C.E. acknowledge support from the EPSRC Program grant on Energy Materials (EP/KO16288) and the Archer HPC/MCC Consortium (EP/L000202). E.M.H. gratefully acknowledges the Netherlands Organization for Scientific Research (NWO) Echo number 712.014.007 for funding. The work was also partially supported by Eni S.p.A. via the Eni-MIT Solar Frontiers Center. The authors thank Mengfei Wu and Marc Baldo for access to an integrating sphere, Jay Patel and Michael Johnston for EQE verifications, and Eli Yablonovitch and Luis Pazos-Outón for helpful discussion

    Crystallographic, Optical, and Electronic Properties of the Cs2AgBi1–xInxBr6 Double Perovskite: Understanding the Fundamental Photovoltaic Efficiency Challenges

    Get PDF
    We present a crystallographic and optoelectronic study of the double perovskite Cs2AgBi1–xInxBr6. From structural characterization we determine that the indium cation shrinks the lattice and shifts the cubic-to-tetragonal phase transition point to lower temperatures. The absorption onset is shifted to shorter wavelengths upon increasing the indium content, leading to wider band gaps, which we rationalize through first-principles band structure calculations. Despite the unfavorable band gap shift, we observe an enhancement in the steady-state photoluminescence intensity, and n-i-p photovoltaic devices present short-circuit current greater than that of neat Cs2AgBiBr6 devices. In order to evaluate the prospects of this material as a solar absorber, we combine accurate absorption measurements with thermodynamic modeling and identify the fundamental limitations of this system. Provided radiative efficiency can be increased and the choice of charge extraction layers are specifically improved, this material could prove to be a useful wide band gap solar absorber

    Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation.

    Get PDF
    Colloidal quantum dots (CQDs) are extremely promising as photovoltaic materials. In particular, the tunability of their electronic band gap and cost effective synthetic procedures allow for the versatile fabrication of solar energy harvesting cells, resulting in optimal device performance. However, one of the main challenges in developing high performance quantum dot solar cells (QDSCs) is the improvement of the photo-generated charge transport and collection, which is mainly hindered by imperfect surface functionalization, such as the presence of surface electronic trap sites and the initial bulky surface ligands. Therefore, for these reasons, finding effective methods to efficiently decorate the surface of the as-prepared CQDs with new short molecular length chemical structures so as to enhance the performance of QDSCs is highly desirable. Here, we suggest employing hybrid halide ions along with the shortest heterocyclic molecule as a robust passivation structure to eliminate surface trap sites while decreasing the charge trapping dynamics and increasing the charge extraction efficiency in CQD active layers. This hybrid ligand treatment shows a better coordination with Pb atoms within the crystal, resulting in low trap sites and a near perfect removal of the pristine initial bulky ligands, thereby achieving better conductivity and film structure. Compared to halide ion-only treated cells, solar cells fabricated through this hybrid passivation method show an increase in the power conversion efficiency from 5.3% for the halide ion-treated cells to 6.8% for the hybrid-treated solar cells
    corecore