47 research outputs found

    Antimicrobial and toxicological activities of five medicinal plant species from Cameroon Traditional Medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectious diseases caused by multiresistant microbial strains are on the increase. Fighting these diseases with natural products may be more efficacious. The aim of this study was to investigate the <it>in vitro </it>antimicrobial activity of methanolic, ethylacetate (EtOAc) and hexanic fractions of five Cameroonian medicinal plants (<it>Piptadeniastum africana</it>, <it>Cissus aralioides, Hileria latifolia, Phyllanthus muellerianus </it>and <it>Gladiolus gregasius) </it>against 10 pathogenic microorganisms of the urogenital and gastrointestinal tracts.</p> <p>Methods</p> <p>The fractions were screened for their chemical composition and <it>in vivo </it>acute toxicity was carried out on the most active extracts in order to assess their inhibitory selectivity.</p> <p>The agar well-diffusion and the micro dilution methods were used for the determination of the inhibition diameters (ID) and Minimum inhibitory concentrations (MIC) respectively on 8 bacterial species including two Gram positive species (<it>Staphylococcus aureus, Enterococcus faecalis)</it>, and six Gram negative <it>(Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Shigella flexneri, Salmonella typhi) </it>and two fungal isolates (<it>Candida albicans, Candida krusei)</it>. The chemical composition was done according to Harbone (1976), the acute toxicity evaluation according to WHO protocol and the hepatic as well as serum parameters measured to assess liver and kidney functions.</p> <p>Results</p> <p>The chemical components of each plant's extract varied according to the solvent used, and they were found to contain alkaloids, flavonoids, polyphenols, triterpens, sterols, tannins, coumarins, glycosides, cardiac glycosides and reducing sugars. The methanolic and ethylacetate extracts of <it>Phyllanthus muellerianus </it>and <it>Piptadeniastum africana </it>presented the highest antimicrobial activities against all tested microorganisms with ID varying from 8 to 26 mm and MIC from 2.5 to 0.31 mg/ml. The <it>in vivo </it>acute toxicity study carried out on the methanolic extracts of <it>Phyllanthus muellerianus </it>and <it>Piptadeniastrum africana </it>indicated that these two plants were not toxic. At the dose of 4 g/kg body weight, kidney and liver function tests indicated that these two medicinal plants induced no adverse effect on these organs.</p> <p>Conclusion</p> <p>These results showed that, all these plant's extracts can be used as antimicrobial phytomedicines which can be therapeutically used against infections caused by multiresistant agents.</p> <p>Phyllanthus muellerianus, Piptadeniastum africana, antimicrobial, acute toxicity, kidney and liver function tests, Cameroon Traditional Medicine</p

    Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult

    Get PDF
    The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intĂ©rieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders

    Prozessorientiertes F&E-Management in der Industrie

    No full text

    ModellgestĂŒtzte Prozessanalyse

    No full text

    Die ModellierungsmethodikDie Modellierungsmethodik

    No full text

    KurzĂŒberblick Prozessmanagement

    No full text

    Increased Expression of Claudin-1 and Claudin-7 in Liver Cirrhosis and Hepatocellular Carcinoma.

    No full text
    Claudins have been reported to be differentially regulated in malignancies and implicated in the process of carcinogenesis and tumor progression. Claudin-1 has been described as key factor in the entry of hepatitis C virus (HCV) into hepatocytes and as promoter of epithelial-mesenchymal transition in liver cells. The objective of the current study was to characterize claudin expression in hepatocellular carcinoma (HCC) as well as HCC-surrounding and normal liver samples with respect to cirrhosis and HCV infection. Expression of claudin-1, -2, -3, -4, and -7 was measured by morphometric analysis of immunohistochemistry, and Western blotting in 30 HCCs with 30 corresponding non-tumorous tissues and 6 normal livers. Claudin-1 and -7 protein expression was found significantly elevated in cirrhosis when compared with non-cirrhotic liver. HCCs developed in cirrhotic livers showed even higher expression of claudin-1 contrary to decreased claudin-7 expression when compared with cirrhosis. With reference to HCV status, HCCs or surrounding livers of HCV-infected samples did not show significant alterations in claudin expression when compared with HCV-negative specimens. Cirrhotic transformation associates with elevated claudin-1 and -7 expressions in both non-tumorous liver and HCC. The fact that no significant differences in claudin expression were found regarding HCV-positivity in our sample set suggests that HCV infection alone does not induce a major increase in the total amount of its entry co-factor claudin-1. Increased expression of claudin-1 seems to be a consequence of cirrhotic transformation and might contribute to a more effective HCV entry and malignant transformation
    corecore