38 research outputs found

    Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices

    Get PDF
    Objective The aim of this study was to investigate how head and neck squamous cell carcinoma (HNSCC) tissue biopsies maintained in a pseudo in vivo environment within a bespoke microfluidic device respond to radiation treatment. Study Design Feasibility study. Setting Tertiary referral center. Subjects and Methods Thirty-five patients with HNSCC were recruited, and liver tissue from 5 Wistar rats was obtained. A microfluidic device was used to maintain the tissue biopsy samples in a viable state. Rat liver was used to optimize the methodology. HNSCC was obtained from patients with T1-T3 laryngeal or oropharyngeal SCC; N1-N2 metastatic cervical lymph nodes were also obtained. Irradiation consisted of single doses of between 2 Gy and 40 Gy and a fractionated course of 5×2 Gy. Cell death was assessed in the tissue effluent using the soluble markers lactate dehydrogenase (LDH) and cytochrome c and in the tissue by immunohistochemical detection of cleaved cytokeratin18 (M30 antibody). Results A significant surge in LDH release was demonstrated in the rat liver after a single dose of 20 Gy; in HNSCC, it was seen after 40 Gy compared with the control. There was no significant difference in cytochrome c release after 5 Gy or 10 Gy. M30 demonstrated a dose-dependent increase in apoptotic index for a given increase in single-dose radiotherapy. There was a significant increase in apoptotic index between 1×2 Gy and 5×2 Gy. Conclusion M30 is a superior method compared with soluble markers in detecting low-dose radiation-induced cell death. This microfluidic technique can be used to assess radiation-induced cell death in HNSCC and therefore has the potential to be used to predict radiation response

    Apoptosis progression studied using parallel dielectrophoresis electrophysiological analysis and flow cytometry.

    No full text
    Apoptosis is characterised by many cellular events, but the standard Annexin-V assay identifies two; the transfer of the phospholipid phosphatidylserine (PS) from inner to outer leaflets of the plasma membrane, acting as an "eat me" signal to macrophages, and the permeabilisation of the plasma membrane. In this paper we compare the results from the Annexin-V assay with electrophysiology data obtained in parallel using dielectrophoresis, which highlights two changes in cell electrophysiology; a change in cytoplasmic conductivity which correlates with PS expression, and a membrane conductance spike that correlates with permeabilisation. Combining results from both methods shows a strong inverse relationship between conductivity and PS externalisation. One mechanism which may explain this correlation is related to intracellular Ca(2+), which is known to increase early in apoptosis. PS expression occurs when enzymes called scramblases swap external and internal phospholipids, and which are usually activated by Ca(2+), whilst the change in cytoplasmic conductivity may be due to K(+) efflux from intermediate conductance (IK) ion channels that are also activated by Ca(2+)

    Epithelial cancer cells exhibit different electrical properties when cultured in 2D and 3D environments.

    No full text
    BACKGROUND: Many drug development and toxicology studies are performed using cells grown in monolayers in well-plates and flasks, despite the fact that these are widely held to be different to cells found in the native environment. 3D, tissue engineered, organotypical tissue culture systems have been developed to be more representative of the native tissue environment than standard monolayer cultures. Whilst the biochemical differences between cells grown in 2D and 3D culture have been explored, the changes on the electrophysiological properties of the cells have not. METHODS: We compared the electrophysiological properties of primary normal oral keratinocytes (nOK) and cancerous abnormal oral keratinocytes (aOK), cultured in standard monolayer and reconstituted 3D organotypical tissue cultures. The electrophysiological properties of populations of the cells were analysed using dielectrophoresis. The intracellular conductivity of aOK was significantly increased when grown in organotypical cultures compared to counterpart cells grown in monolayer cultures. RESULTS: 3D cultured aOK showed almost identical intracellular conductivity to nOK also grown in organotypical cultures, but significantly different to aOK grown in monolayers. The effective membrane capacitance of aOK grown in 3D was found to be significantly higher than nOK, but there was no significant difference between the electrophysiological properties of nOK grown in 2D and 3D cultures. GENERAL SIGNIFICANCE: This work suggests that factors such as cell shape and cytoplasmic trafficking between cells play an important role in their electrophysiology, and highlights the need to use in vitro models more representative of native tissue when studying cell electrophysiological properties

    Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis.

    No full text
    Most oral cancers are oral squamous cell carcinomas (OSCC) that arise from the epithelial lining of the oral mucosa. Given that the oral cavity is easily accessible, the disease lends itself to early detection; however, most oral cancers are diagnosed at a late stage, and approximately half of oral cancer sufferers do not survive beyond five years, post-diagnosis. The low survival rate has been attributed to late detection, but there is no accepted, reliable and convenient method for the detection of oral cancer and oral pre-cancer. Dielectrophoresis (DEP) is a label-free technique which can be used to obtain multi-parametric measurements of cell electrical properties. Parameters such as cytoplasmic conductivity and effective membrane capacitance (C(Eff)) can be non-invasively determined by the technique. In this study, a novel lab-on-a-chip device was used to determine the cytoplasmic conductivity and C(Eff) of primary normal oral keratinocytes, and pre-cancerous and cancerous oral keratinocyte cell lines. Our results show that the electrical properties of normal, pre-cancerous and cancerous oral keratinocytes are distinct. Furthermore, increasing C (Eff) and decreasing cytoplasmic conductivity correlate with disease progression which could prove significant for diagnostic and prognostic applications. DEP has the potential to be used as a non-invasive technique to detect oral cancer and oral pre-cancer. Clinical investigation is needed to establish the reliability and temporal relationship of the correlation between oncologic disease progression and the electrical parameters identified in this study. To use this technique as an OSCC detection tool in a clinical setting, further characterisation and refinement is warranted

    A dielectrophoretic method of discrimination between normal oral epithelium, and oral and oropharyngeal cancer in a clinical setting

    Get PDF
    Despite the accessibility of the oral cavity to clinical examination, delays in diagnosis of oral and oropharyngeal carcinoma (OOPC) are observed in a large majority of patients, with negative impact on prognosis. Diagnostic aids might help detection and improve early diagnosis, but there remains little robust evidence supporting the use of any particular diagnostic technology at the moment. The aim of the present feasibility first-in-human study was to evaluate the preliminary diagnostic validity of a novel technology platform based on dielectrophoresis (DEP). DEP does not require labeling with antibodies or stains and it is an ideal tool for rapid analysis of cell properties. Cells from OOPC/dysplasia tissue and healthy oral mucosa were collected from 57 study participants via minimally-invasive brush biopsies and tested with a prototype DEP platform using median membrane midpoint frequency as main analysis parameter. Results indicate that the current DEP platform can discriminate between brush biopsy samples from cancerous and healthy oral tissue with a diagnostic sensitivity of 81.6% and a specificity of 81.0%. The present ex vivo results support the potential application of DEP testing for identification of OOPC. This result indicates that DEP has the potential to be developed into a low-cost, rapid platform as an assistive tool for the early identification of oral cancer in primary care; given the rapid, minimally-invasive and non-expensive nature of the test, dielectric characterization represents a promising platform for cost-effective early cancer detection

    Rapid detection of oral cancer: Electrophysiological characterization by dielectrophoresis technology

    No full text
    Microengineered medical devices offer many potential benefits for point-of-care healthcare and rapid diagnosis, particularly in the field of rapid cancer detection. We have developed a microengineered system using the electrostatic phenomenon dielectrophoresis (DEP) to non-invasively determine the electrophysiological parameters of normal and cancerous oral brush biopsies, looking at both samples consisting primarily of keratinocytes and those consisting primarily of fibroblasts. The cells were isolated from patients after informed consent and the normal, dysplastic/ cancerous state of oral biopsies were confirmed histopathologycally. Cytoplasmic conductivity and specific membrane capacitance were determined using DEP. Cancerous brush biopsies exhibited significantly different electrophysiological fingerprints to normal oral mucosa. KCND2, a gene encoding a member of voltage-activated potassium ion channels was found to be differentially expressed between CAFs and NOFs

    Clinical and radiological results of arthroscopically treated tibial spine fractures in childhood

    No full text
    The objective of this study is to report the clinical and radiological long-term follow-up evaluation of young patients arthroscopically treated for anterior tibial eminence fracture. Ten patients (mean age: 13.5 years) were treated between 1992 and 2006. At follow-up they were clinically and radiologically evaluated. Moreover, they underwent assessment with the International Knee Documentation Committee (IKDC) forms, Lysholm and Tegner knee scales and measurement with the KT-1000 arthrometer. At a mean follow-up of 85.8 months, all of the patients reported a subjective good-excellent outcome. Objectively, the Lachman test was negative in seven patients and positive in three patients; six patients (60%) registered a slight (+) to mild (++) pivot-glide test. The mean value of KT-1000 arthrometer measurements was 3 mm; all knee scales showed satisfactory results. Radiological exam always showed good healing of the fracture. Fractures of the tibial spine often lead to anterior and rotational knee laxity. However, despite this instrumental finding, patients usually do not report any type of restriction in their functional or sports activities
    corecore