27 research outputs found
Purifying Selection in Deeply Conserved Human Enhancers Is More Consistent than in Coding Sequences
(c) 2014 De Silva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Principles of Glomerular Organization in the Human Olfactory Bulb β Implications for Odor Processing
Olfactory sensory neurons (OSN) in mice express only 1 of a possible 1,100 odor receptors (OR) and axons from OSNs expressing the same odor receptor converge into βΌ2 of the 1,800 glomeruli in each olfactory bulb (OB) in mice; this yields a convergence ratio that approximates 2βΆ1, 2 glomeruli/OR. Because humans express only 350 intact ORs, we examined human OBs to determine if the glomerular convergence ratio of 2βΆ1 established in mice was applicable to humans. Unexpectedly, the average number of human OB glomeruli is >5,500 yielding a convergence ratio of βΌ16βΆ1. The data suggest that the initial coding of odor information in the human OB may differ from the models developed for rodents and that recruitment of additional glomeruli for subpopulations of ORs may contribute to more robust odor representation
An integrative approach for building personalized gene regulatory networks for precision medicine
Only a small fraction of patients respond to the drug prescribed to treat their disease, which means that most are at risk of unnecessary exposure to side effects through ineffective drugs. This inter-individual variation in drug response is driven by differences in gene interactions caused by each patient's genetic background, environmental exposures, and the proportions of specific cell types involved in disease. These gene interactions can now be captured by building gene regulatory networks, by taking advantage of RNA velocity (the time derivative of the gene expression state), the ability to study hundreds of thousands of cells simultaneously, and the falling price of single-cell sequencing. Here, we propose an integrative approach that leverages these recent advances in single-cell data with the sensitivity of bulk data to enable the reconstruction of personalized, cell-type- and context-specific gene regulatory networks. We expect this approach will allow the prioritization of key driver genes for specific diseases and will provide knowledge that opens new avenues towards improved personalized healthcare
Genomic mapping of the MHC transactivator CIITA using an integrated ChIP-seq and genetical genomics approach
BACKGROUND: The master transactivator CIITA is essential to the regulation of Major Histocompatibility Complex (MHC) class II genes and an effective immune response. CIITA is known to modulate a small number of non-MHC genes involved in antigen presentation such as CD74 and B2M but its broader genome-wide function and relationship with underlying genetic diversity has not been resolved. RESULTS: We report the first genome-wide ChIP-seq map for CIITA and complement this by mapping inter-individual variation in CIITA expression as a quantitative trait. We analyse CIITA recruitment for pathophysiologically relevant primary human B cells and monocytes, resting and treated with interferon-gamma, in the context of the epigenomic regulatory landscape and DNA-binding proteins associated with the CIITA enhanceosome including RFX, CREB1/ATF1 and NFY. We confirm recruitment to proximal promoter sequences in MHC class II genes and more distally involving the canonical CIITA enhanceosome. Overall, we map 843 CIITA binding intervals involving 442 genes and find 95% of intervals are located outside the MHC and 60% not associated with RFX5 binding. Binding intervals are enriched for genes involved in immune function and infectious disease with novel loci including major histone gene clusters. We resolve differentially expressed genes associated in trans with a CIITA intronic sequence variant, integrate with CIITA recruitment and show how this is mediated by allele-specific recruitment of NF-kB. CONCLUSIONS: Our results indicate a broader role for CIITA beyond the MHC involving immune-related genes. We provide new insights into allele-specific regulation of CIITA informative for understanding gene function and disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0494-z) contains supplementary material, which is available to authorized users