261 research outputs found

    Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices

    Get PDF
    The brain should integrate related but not unrelated information from different senses. Temporal patterning of inputs to different modalities may provide critical information about whether those inputs are related or not. We studied effects of temporal correspondence between auditory and visual streams on human brain activity with functional magnetic resonance imaging ( fMRI). Streams of visual flashes with irregularly jittered, arrhythmic timing could appear on right or left, with or without a stream of auditory tones that coincided perfectly when present ( highly unlikely by chance), were noncoincident with vision ( different erratic, arrhythmic pattern with same temporal statistics), or an auditory stream appeared alone. fMRI revealed blood oxygenation level-dependent ( BOLD) increases in multisensory superior temporal sulcus (mSTS), contralateral to a visual stream when coincident with an auditory stream, and BOLD decreases for noncoincidence relative to unisensory baselines. Contralateral primary visual cortex and auditory cortex were also affected by audiovisual temporal correspondence or noncorrespondence, as confirmed in individuals. Connectivity analyses indicated enhanced influence from mSTS on primary sensory areas, rather than vice versa, during audiovisual correspondence. Temporal correspondence between auditory and visual streams affects a network of both multisensory ( mSTS) and sensory-specific areas in humans, including even primary visual and auditory cortex, with stronger responses for corresponding and thus related audiovisual inputs

    The dopaminergic midbrain participates in human episodic memory formation: Evidence from genetic imaging

    Get PDF
    Recent data from animal studies raise the possibility that dopaminergic neuromodulation promotes the encoding of novel stimuli. We investigated a possible role for the dopaminergic midbrain in human episodic memory by measuring how polymorphisms in dopamine clearance pathways affect encoding-related brain activity (functional magnetic resonance imaging) in an episodic memory task. In 51 young, healthy adults, successful episodic encoding was associated with activation of the substantia nigra. This midbrain activation was modulated by a functional variable number of tandem repeat (VNTR) polymorphism in the dopamine transporter (DAT1) gene. Despite no differences in memory performance between genotype groups, carriers of the (low expressing) 9-repeat allele of the DAT1 VNTR showed relatively higher midbrain activation when compared with subjects homozygous for the 10-repeat allele, who express DAT1 at higher levels. The catechol-O-methyl transferase (COMT) Val108/158Met polymorphism, which is known to modulate enzyme activity, affected encoding-related activity in the right prefrontal cortex (PFC) and in occipital brain regions but not in the midbrain. Moreover, subjects homozygous for the (low activity) Met allele showed stronger functional coupling between the PFC and the hippocampus during encoding. Our finding that genetic variations in the dopamine clearance pathways affect encoding-related activation patterns in midbrain and PFC provides strong support for a role of dopaminergic neuromodulation in human episodic memory formation. It also supports the hypothesis of anatomically and functionally distinct roles for DAT1 and COMT in dopamine metabolism, with DAT1 modulating rapid, phasic midbrain activity and COMT being particularly involved in prefrontal dopamine clearance

    Implications of quantitative susceptibility mapping at 7 Tesla MRI for microbleeds detection in cerebral small vessel disease

    Get PDF
    BACKGROUND: Cerebral microbleeds (MBs) are a hallmark of cerebral small vessel disease (CSVD) and can be found on T2*-weighted sequences on MRI. Quantitative susceptibility mapping (QSM) is a postprocessing method that also enables MBs identification and furthermore allows to differentiate them from calcifications. AIMS: We explored the implications of using QSM at submillimeter resolution for MBs detection in CSVD. METHODS: Both 3 and 7 Tesla (T) MRI were performed in elderly participants without MBs and patients with CSVD. MBs were quantified on T2*-weighted imaging and QSM. Differences in the number of MBs were assessed, and subjects were classified in CSVD subgroups or controls both on 3T T2*-weighted imaging and 7T QSM. RESULTS: 48 participants [mean age (SD) 70.9 (8.8) years, 48% females] were included: 31 were healthy controls, 6 probable cerebral amyloid angiopathy (CAA), 9 mixed CSVD, and 2 were hypertensive arteriopathy [HA] patients. After accounting for the higher number of MBs detected at 7T QSM (Median = Mdn; Mdn7T−QSM = 2.5; Mdn3T−T2 = 0; z = 4.90; p < 0.001) and false positive MBs (6.1% calcifications), most healthy controls (80.6%) demonstrated at least one MB and more MBs were discovered in the CSVD group. CONCLUSIONS: Our observations suggest that QSM at submillimeter resolution improves the detection of MBs in the elderly human brain. A higher prevalence of MBs than so far known in healthy elderly was revealed

    Re-construction of action awareness depends on an internal model of action-outcome timing.

    Get PDF
    The subjective time of an instrumental action is shifted towards its outcome. This temporal binding effect is partially retrospective, i.e., occurs upon outcome perception. Retrospective binding is thought to reflect post-hoc inference on agency based on sensory evidence of the action - outcome association. However, many previous binding paradigms cannot exclude the possibility that retrospective binding results from bottom-up interference of sensory outcome processing with action awareness and is functionally unrelated to the processing of the action - outcome association. Here, we keep bottom-up interference constant and use a contextual manipulation instead. We demonstrate a shift of subjective action time by its outcome in a context of variable outcome timing. Crucially, this shift is absent when there is no such variability. Thus, retrospective action binding reflects a context-dependent, model-based phenomenon. Such top-down re-construction of action awareness seems to bias agency attribution when outcome predictability is low

    Management and efficacy of intensified insulin therapy starting in outpatients

    Get PDF
    Diabetic patients under multiple injection insulin therapy (i.e., intensified insulin therapy, IIT) usually start this treatment during hospitalization. We report here on the logistics, efficacy, and safety of IIT, started in outpatients. Over 8 months, 52 type I and type II diabetics were followed up whose insulin regimens consecutively had been changed from conventional therapy to IIT. Two different IIT strategies were compared: free mixtures of regular and intermediate (12 hrs)-acting insulin versus the basal and prandial insulin treatment with preprandial injections of regular insulin, and ultralente (24 hrs-acting) or intermediate insulin for the basal demand. After 8 months HbA1 levels had decreased from 10.6%±2.4% to 8.0%±1.3% (means±SD). There was no difference between the two regimens with respect to metabolic control; but type II patients maintained the lowered HbA1 levels better than type I patients. Only two patients were hospitalized during the follow-up time because of severe hypoglycemia. An increase of body weight due to the diet liberalization during IIT became a problem in one-third of the patients. Our results suggest that outpatient initiation of IIT is safe and efficacious with respect to near-normoglycemic control. Weight control may become a problem in IIT patients

    Detection of Cerebral Microbleeds With Venous Connection at 7-Tesla MRI

    Get PDF
    Objective: Cerebral microbleeds (MBs) are a common finding in patients with cerebral small vessel disease (CSVD) and Alzheimer disease as well as in healthy elderly people, but their pathophysiology remains unclear. To investigate a possible role of veins in the development of MBs, we performed an exploratory study, assessing in vivo presence of MBs with a direct connection to a vein. Methods: 7-Tesla (7T) MRI was conducted and MBs were counted on quantitative susceptibility mapping (QSM). A submillimeter resolution QSM-based venogram allowed identification of MBs with a direct spatial connection to a vein. Results: A total of 51 people (mean age [SD] 70.5 [8.6] years, 37% female) participated in the study: 20 had CSVD (cerebral amyloid angiopathy [CAA] with strictly lobar MBs [n = 8], hypertensive arteriopathy [HA] with strictly deep MBs [n = 5], or mixed lobar and deep MBs [n = 7], 72.4 [6.1] years, 30% female) and 31 were healthy controls (69.4 [9.9] years, 42% female). In our cohort, we counted a total of 96 MBs with a venous connection, representing 14% of all detected MBs on 7T QSM. Most venous MBs (86%, n = 83) were observed in lobar locations and all of these were cortical. Patients with CAA showed the highest ratio of venous to total MBs (19%) (HA = 9%, mixed = 18%, controls = 5%). Conclusion: Our findings establish a link between cerebral MBs and the venous vasculature, pointing towards a possible contribution of veins to CSVD in general and to CAA in particular. Pathologic studies are needed to confirm our observations

    Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults

    Get PDF
    Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here

    Stereotactic laser thermal ablation of mesial temporal lobe epilepsy with right hippocampal sclerosis—patient decision-making, realization and visualization of memory function

    Get PDF
    Zusammenfassung: Wir berichten über einen 30-jährigen Patienten, der mit 21 Jahren an einer fokalen Epilepsie mit epigastrischen Auren und nicht bewusst erlebten Anfällen sowie selten bilateralen tonisch-klonischen Anfällen mit Hippocampussklerose erkrankte. Dem Patienten wurde das resektive Standardverfahren (vordere Temporallappenresektion) sowie alternativ das neu in Europa zugelassene Verfahren der stereotaktischen Laserthermoablation angeboten. Der Patient entschied sich aufgrund der geringeren Invasivität für letzteres Verfahren. Im Folgenden werden der klinische Verlauf mit einer postoperativen Nachbeobachtungszeit von 9 Monaten berichtet. Zudem wird die Methode und die Ergebnisse einer funktionellen Gedächtnis-MRT Untersuchung beschrieben. / Abstract: This article reports about a 30-year-old male patient who had suffered from a focal epilepsy with epigastric auras, unaware seizures and rarely bilateral tonic clonic seizures due to hippocampal sclerosis since the age of 21 years. The patient was offered the standard anterior temporal lobe resection and alternatively stereotactic laser thermal ablation, which recently received approval with the European CE mark. The patient opted for stereotactic laser ablation because of its less invasive nature compared to standard craniotomy and resection. This article reports the clinical course over a 9-month follow-up period. Additionally, the method and the results of a functional magnetic resonance imaging (fMRI) memory examination are summarized

    Photonic quantum state transfer between a cold atomic gas and a crystal

    Full text link
    Interfacing fundamentally different quantum systems is key to build future hybrid quantum networks. Such heterogeneous networks offer superior capabilities compared to their homogeneous counterparts as they merge individual advantages of disparate quantum nodes in a single network architecture. However, only very few investigations on optical hybrid-interconnections have been carried out due to the high fundamental and technological challenges, which involve e.g. wavelength and bandwidth matching of the interfacing photons. Here we report the first optical quantum interconnection between two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be faithfully transferred between a cold atomic ensemble and a rare-earth doped crystal via a single photon at telecommunication wavelength, using cascaded quantum frequency conversion. We first demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred onto the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85%85\%. Our results open prospects to optically connect quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks

    Mesolimbic fMRI activations during reward anticipation correlate with reward-related ventral striatal dopamine release

    Get PDF
    The dopaminergic mechanisms that control reward-motivated behavior are the subject of intense study, but it is yet unclear how, in humans, neural activity in mesolimbic reward-circuitry and its functional neuroimaging correlates are related to dopamine release. To address this question, we obtained functional magnetic resonance imaging (fMRI) measures of reward-related neural activity and [11C] raclopride positron emission tomography (PET) measures of dopamine release in the same human participants, while they performed a delayed monetary incentive task. Across the cohort, a positive correlation emerged between neural activity of the substantia nigra / ventral tegmental area (SN/VTA), the main origin of dopaminergic neurotransmission, during reward anticipation and reward-related [11C] raclopride displacement as an index of dopamine release in the ventral striatum, major target of SN/VTA dopamine neurons. Neural activity in the ventral striatum / nucleus accumbens itself also correlated with ventral striatal dopamine release.Additionally, high reward-related dopamine release was associated with increased activation of limbic structures, such as the amygdala and the hippocampus. The observed correlations of reward-related mesolimbic fMRI activation and dopamine release provide evidence that dopaminergic neurotransmission plays a quantitative role in human mesolimbic reward processing. Moreover, the combined neurochemical and hemodynamic imaging approach used here opens up new perspectives for the investigation of molecular mechanisms underlying human cognition
    corecore