52 research outputs found

    Differential expression of microRNAs during fiber development between fuzzless- lintless mutant and its wild-type allotetraploid cotton

    Get PDF
    Cotton is one of the most important textile crops but little is known how microRNAs regulate cotton fiber development. Using a well-studied cotton fiberless mutant Xu-142-fl, we compared 54 miRNAs for their expression between fiberless mutant and its wildtype. In wildtype Xu-142, 26 miRNAs are involved in cotton fiber initiation and 48 miRNAs are related to primary wall synthesis and secondary wall thickening. Thirty three miRNAs showed different expression in fiber initiation between Xu-142 and Xu- 142-fl. These miRNAs potentially target 723 protein-coding genes, including transcription factors, such as MYB, ARF, and LRR. ARF18 was newly predicted targets of miR160a, and miR160a was expressed at higher level in −2DPA of Xu-142-fl compared with Xu-142. Furthermore, the result of Gene Ontology- based term classification (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis shows that miRNA targets were classified to 222 biological processes, 64 cellular component and 42 molecular functions, enriched in 22 KOG groups, and classified into 28 pathways. Together, our study provides evidence for better understanding of miRNA regulatory roles in the process of fiber development, which is helpful to increase fiber yield and improve fiber quality

    A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The cotton (<it>Gossypium hirsutum </it>L.) fiber mutation Ligon lintless-2 is controlled by a single dominant gene (<it>Li<sub>2</sub></it>) that results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, <it>Li<sub>2 </sub></it>is a model system with which to study fiber elongation.</p> <p>Results</p> <p>Two near-isogenic lines of Ligon lintless-2 (<it>Li<sub>2</sub></it>) cotton, one mutant and one wild-type, were developed through five generations of backcrosses (BC<sub>5</sub>). An F<sub>2 </sub>population was developed from a cross between the two <it>Li<sub>2 </sub></it>near-isogenic lines and used to develop a linkage map of the <it>Li<sub>2 </sub></it>locus on chromosome 18. Five simple sequence repeat (SSR) markers were closely mapped around the <it>Li<sub>2 </sub></it>locus region with two of the markers flanking the <it>Li<sub>2 </sub></it>locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays suggested roles of reactive oxygen species (ROS) homeostasis and cytokinin regulation in the <it>Li<sub>2 </sub></it>mutant phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991) that displayed complete linkage to the <it>Li<sub>2 </sub></it>locus.</p> <p>Conclusions</p> <p>In the field of cotton genomics, we report the first successful conversion of gene expression data into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-derived SSR marker NAU3991 displayed complete linkage to the <it>Li<sub>2 </sub></it>locus on chromosome 18 and resided in a gene with similarity to a putative plectin-related protein. The complete linkage suggests that this expressed sequence may be the <it>Li<sub>2 </sub></it>gene.</p

    Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alfalfa, [<it>Medicago sativa </it>(L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling.</p> <p>Results</p> <p>Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (<it>Medicago sativa</it>) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the <it>de novo </it>assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes.</p> <p>Conclusions</p> <p>Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.</p
    corecore