7,945 research outputs found

    A comparison of the long-term health-related quality of life of handicap of stroke patients in Mainland China and Hong Kong

    Get PDF
    Purpose: To compare health related quality of life (HRQOL) and handicap of stroke survivors in Hong Kong (HK) and Chengdu (CD) in Mainland China. Method: Fifty-four pairs of first ever stroke patients in CD and in HK matched by age, sex and Modified Barthel Index (MBI) were interviewed using a structured questionnaire at 16–36 months after stroke. HRQOL and handicap outcomes were evaluated by the Chinese version of the Short-Form Health Survey (SF-36) and London Handicap Scale (LHS) respectively. Results: Compared to stroke patients in CD, HK subjects reported significantly greater handicap, especially in the occupation domain. HK subjects also had significantly lower HRQOL Z scores in domains of role limitations due to emotional or physical problems, and bodily pain. CD subjects had more social support, but had more difficulties in meeting medical costs, and were less likely to have regular medical follow-up and dysphagia symptom. After adjusting for social and health related factors, the site differences in handicap and the role limitation (physical) domain of SF36 became insignificant. Conclusions: CD stroke survivors had better scores in HRQOL and fewer handicaps than their counterparts in HK, because of social and health related factors.published_or_final_versio

    A Method to Improve the Early Stages of the Robotic Process Automation Lifecycle

    Get PDF
    The robotic automation of processes is of much interest to organizations. A common use case is to automate the repetitive manual tasks (or processes) that are currently done by back-office staff through some information system (IS). The lifecycle of any Robotic Process Automation (RPA) project starts with the analysis of the process to automate. This is a very time-consuming phase, which in practical settings often relies on the study of process documentation. Such documentation is typically incomplete or inaccurate, e.g., some documented cases never occur, occurring cases are not documented, or documented cases differ from reality. To deploy robots in a production environment that are designed on such a shaky basis entails a high risk. This paper describes and evaluates a new proposal for the early stages of an RPA project: the analysis of a process and its subsequent design. The idea is to leverage the knowledge of back-office staff, which starts by monitoring them in a non-invasive manner. This is done through a screen-mousekey- logger, i.e., a sequence of images, mouse actions, and key actions are stored along with their timestamps. The log which is obtained in this way is transformed into a UI log through image-analysis techniques (e.g., fingerprinting or OCR) and then transformed into a process model by the use of process discovery algorithms. We evaluated this method for two real-life, industrial cases. The evaluation shows clear and substantial benefits in terms of accuracy and speed. This paper presents the method, along with a number of limitations that need to be addressed such that it can be applied in wider contexts.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-

    Flavor SU(3) symmetry and QCD factorization in BPPB \to PP and PVPV decays

    Full text link
    Using flavor SU(3) symmetry, we perform a model-independent analysis of charmless Bˉu,d(Bˉs)PP, PV\bar B_{u,d} (\bar B_s) \to PP, ~PV decays. All the relevant topological diagrams, including the presumably subleading diagrams, such as the QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be important in understanding the data for penguin-dominated decay modes. In this work we make efforts to bridge the (model-independent but less quantitative) topological diagram or flavor SU(3) approach and the (quantitative but somewhat model-dependent) QCD factorization (QCDF) approach in these decays, by explicitly showing how to translate each flavor SU(3) amplitude into the corresponding terms in the QCDF framework. After estimating each flavor SU(3) amplitude numerically using QCDF, we discuss various physical consequences, including SU(3) breaking effects and some useful SU(3) relations among decay amplitudes of BˉsPV\bar B_s \to PV and BˉdPV\bar B_d \to PV.Comment: 47 pages, 3 figures, 28 table

    The Hagedorn spectrum and large NcN_c QCD in 2+1 and 3+1 dimensions

    Full text link
    We show that a Hagedorn spectrum (i.e., spectrum where the number of hadrons grows exponentially with the mass) emerges automatically in large NcN_c QCD in 2+1 and 3+1 dimensions. The approach is based on the study of Euclidean space correlation functions for composite operators constructed from quark and gluon fields and exploits the fact that the short time behavior of the correlators is known in QCD. The demonstration relies on one critical assumption: that perturbation theory accurately describes the trace of the logarithm of a matrix of point-to-point correlation functions in the regime where the perturbative corrections to the asymptotically free value are small.Comment: 18 pages, 5 figure

    Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency

    Get PDF
    Recent rapid progress in efficiencies for solar water splitting by photoelectrochemical devices has enhanced its prospects to enable storable renewable energy. Efficient solar fuel generators all use tandem photoelectrode structures, and advanced integrated devices incorporate corrosion protection layers as well as heterogeneous catalysts. Realization of near thermodynamic limiting performance requires tailoring the energy band structure of the photoelectrode and also the optical and electronic properties of the surface layers exposed to the electrolyte. Here, we report a monolithic device architecture that exhibits reduced surface reflectivity in conjunction with metallic Rh nanoparticle catalyst layers that minimize parasitic light absorption. Additionally, the anatase TiO2 protection layer on the photocathode creates a favorable internal band alignment for hydrogen evolution. An initial solar-to-hydrogen efficiency of 19.3 % is obtained in acidic electrolyte and an efficiency of 18.5 % is achieved at neutral pH condition (under simulated sunlight)

    Battery management system and control strategy for hybrid and electric vehicle

    Get PDF
    Author name used in this publication: K. W. E. ChengAuthor name used in this publication: K. DingAuthor name used in this publication: W. TingVersion of RecordPublishe

    Dynamical Axion Field in Topological Magnetic Insulators

    Full text link
    Axions are very light, very weakly interacting particles postulated more than 30 years ago in the context of the Standard Model of particle physics. Their existence could explain the missing dark matter of the universe. However, despite intensive searches, they have yet to be detected. In this work, we show that magnetic fluctuations of topological insulators couple to the electromagnetic fields exactly like the axions, and propose several experiments to detect this dynamical axion field. In particular, we show that the axion coupling enables a nonlinear modulation of the electromagnetic field, leading to attenuated total reflection. We propose a novel optical modulators device based on this principle.Comment: 5 pages, 3 figure

    Electronic Properties of Boron and Nitrogen doped graphene: A first principles study

    Full text link
    Effect of doping of graphene either by Boron (B), Nitrogen (N) or co-doped by B and N is studied using density functional theory. Our extensive band structure and density of states calculations indicate that upon doping by N (electron doping), the Dirac point in the graphene band structure shifts below the Fermi level and an energy gap appears at the high symmetric K-point. On the other hand, by B (hole doping), the Dirac point shifts above the Fermi level and a gap appears. Upon co-doping of graphene by B and N, the energy gap between valence and conduction bands appears at Fermi level and the system behaves as narrow gap semiconductor. Obtained results are found to be in well agreement with available experimental findings.Comment: 11 pages, 4 figures, 1 table, submitted to J. Nanopart. Re

    Discovering monotonic stemness marker genes from time-series stem cell microarray data

    Get PDF
    © 2015 Wang et al.; licensee BioMed Central Ltd. Background: Identification of genes with ascending or descending monotonic expression patterns over time or stages of stem cells is an important issue in time-series microarray data analysis. We propose a method named Monotonic Feature Selector (MFSelector) based on a concept of total discriminating error (DEtotal) to identify monotonic genes. MFSelector considers various time stages in stage order (i.e., Stage One vs. other stages, Stages One and Two vs. remaining stages and so on) and computes DEtotal of each gene. MFSelector can successfully identify genes with monotonic characteristics.Results: We have demonstrated the effectiveness of MFSelector on two synthetic data sets and two stem cell differentiation data sets: embryonic stem cell neurogenesis (ESCN) and embryonic stem cell vasculogenesis (ESCV) data sets. We have also performed extensive quantitative comparisons of the three monotonic gene selection approaches. Some of the monotonic marker genes such as OCT4, NANOG, BLBP, discovered from the ESCN dataset exhibit consistent behavior with that reported in other studies. The role of monotonic genes found by MFSelector in either stemness or differentiation is validated using information obtained from Gene Ontology analysis and other literature. We justify and demonstrate that descending genes are involved in the proliferation or self-renewal activity of stem cells, while ascending genes are involved in differentiation of stem cells into variant cell lineages.Conclusions: We have developed a novel system, easy to use even with no pre-existing knowledge, to identify gene sets with monotonic expression patterns in multi-stage as well as in time-series genomics matrices. The case studies on ESCN and ESCV have helped to get a better understanding of stemness and differentiation. The novel monotonic marker genes discovered from a data set are found to exhibit consistent behavior in another independent data set, demonstrating the utility of the proposed method. The MFSelector R function and data sets can be downloaded from: http://microarray.ym.edu.tw/tools/MFSelector/
    corecore