40 research outputs found
Capillary-assembled microchip as an on-line deproteinization device for capillary electrophoresis
A capillary-assembled microchip (CAs-CHIP), prepared by simply embedding square capillaries in a lattice polydimethylsiloxane (PDMS) channel plate with the same channel dimensions as the outer dimensions of the square capillaries, has been used as a diffusion-based pretreatment attachment in capillary electrophoresis (CE). Because the CAs-CHIPs employ square-section channels, diffusion-based separation of small molecules from sample solutions containing proteins is possible by using the multilayer flow formed in the square section channel. When a solution containing high-molecular-weight and low-molecular-weight species makes contact with a buffer solution, the low-molecular-weight species, which have larger diffusion coefficients than the high-molecular-weight species, can be collected in a buffer-solution phase. The collected solution containing the low-molecular-weight species is introduced into the separation capillary to be analyzed by CE. This type of system can be used for CE analysis in which pretreatment is required to remove proteins. In this work a fluorescently labeled protein and rhodamine-based molecules were chosen as model species and a feasibility study was performed. [Image: see text
Integrated Multilayer Flow System on a Microchip.
We utilized microchip technology and found that the multilayer flow of liquids can be formed in microchannels. Liquid/liquid interfaces were formed parallel to the side wall of the microchannels, because the surface tension and friction force are stronger than the force of gravity. A water/ethylacetate/water interface was formed in a 70-µm-wide and 30-µm-deep channel. The interface was observed to be quite stable and to be maintained for a distance of more than 18 cm. As an example of a multilayer flow application, we demonstrated the liquid/liquid extraction of Co-dimethylaminophenol complex in a microchannel. The solvent-extraction process of the complex into m-xylene in the multilayer flow was found to reach equilibrium in 4 s, while it took 60 s in a simple two-phase extraction
Integration of Chemical and Biochemical Analysis Systems into a Glass Microchip.
This review focuses on the integration of chemical and biochemical analysis systems into glass microchips for general use. By combining multiphase laminar flow driven by pressure and micro unit operations, such as mixing, reaction, extraction and separation, continuous-flow chemical processing systems can be realized in the microchip format, while the application of electrophoresis-based chip technology is limited. The performances of several analysis systems were greatly improved by microchip integration because of some characteristics of microspace, i.e., a large specific interface area, a short molecular diffusion time, a small heat capacity and so on. By applying these concepts, several different analysis systems, i.e., wet analysis of cobalt ion, multi-ion sensor, immunoassay, and cellular analysis, were successfully integrated on a microchip. These microchip technologies are promising for meeting the future demands of high-throughput chemical processing
Modulating Optical Characteristics of Nanoimprinted Plasmonic Device by Re-Shaping Process of Polymer Mold
Metal nanostructures exhibit specific optical characteristics owing to their localized surface plasmon resonance (LSPR) and have been studied for applications in various optical devices. The LSPR property strongly depends on the size and shape of metal nanostructures; thus, plasmonic devices must be designed and fabricated according to their uses. Nanoimprint lithography (NIL) is an effective process for repeatedly fabricating metal nanostructures with controlled sizes and shapes and require optical properties. NIL is a powerful method for mass-producible, low-cost, and large-area fabrication. However, the process lacks flexibility in adjusting the size and shape according to the desirable optical characteristics because the size and shape of metal nanostructures are determined by a single corresponding mold. Here, we conducted a re-shaping process through the air-plasma etching of a polymer’s secondary mold (two-dimensional nanopillar array made of cyclo-olefin polymer (COP)) to modulate the sizes and shapes of nanopillars; then, we controlled the spectral characteristics of the imprinted plasmonic devices. The relationship between the structural change of the mold, which was based on etching time, and the optical characteristics of the corresponding plasmonic device was evaluated through experiments and simulations. According to evaluation results, the diameter of the nanopillar was controlled from 248 to 139 nm due to the etching time and formation of a pit structure. Consequently, the spectral properties changed, and responsivity to the surrounding dielectric environment was improved. Therefore, plasmonic devices based on the re-shaped COP mold exhibited a high responsivity to a refractive index of 906 nm/RIU at a wavelength of 625 nm
Fabrication of Gold Nanostructures on Quartz Crystal Microbalance Surface Using Nanoimprint Lithography for Sensing Applications
A quartz crystal microbalance (QCM) is a sensor that uses the piezoelectric properties of quartz crystals sandwiched between conductive electrodes. Localized surface plasmon resonance (LSPR) is an analytical technique that uses the collective vibration of free electrons on metal surfaces. These measurements are known as analysis techniques that use metal surfaces and have been applied as biosensors because they allow for the label-free monitoring of biomolecular binding reactions. These measurements can be used in combination to analyze the reactions that occur on metal surfaces because different types of information can be obtained from them. However, as different devices are used for these measurements, the results often contain device-to-device errors and are not accurately evaluated. In this study, we directly fabricated gold nanostructures on the surface of a QCM to create a device that can simultaneously measure the mass and refractive index information of the analyte. In addition, the device could be easily fabricated because nanoimprint lithography was used to fabricate gold nanostructures. As a proof of concept, the nanoparticle adsorption on gold nanostructures was evaluated, and it was observed that mass and refractive index information were successfully obtained without device-to-device errors
Modulating Optical Characteristics of Nanoimprinted Plasmonic Device by Re-Shaping Process of Polymer Mold
Metal nanostructures exhibit specific optical characteristics owing to their localized surface plasmon resonance (LSPR) and have been studied for applications in various optical devices. The LSPR property strongly depends on the size and shape of metal nanostructures; thus, plasmonic devices must be designed and fabricated according to their uses. Nanoimprint lithography (NIL) is an effective process for repeatedly fabricating metal nanostructures with controlled sizes and shapes and require optical properties. NIL is a powerful method for mass-producible, low-cost, and large-area fabrication. However, the process lacks flexibility in adjusting the size and shape according to the desirable optical characteristics because the size and shape of metal nanostructures are determined by a single corresponding mold. Here, we conducted a re-shaping process through the air-plasma etching of a polymer’s secondary mold (two-dimensional nanopillar array made of cyclo-olefin polymer (COP)) to modulate the sizes and shapes of nanopillars; then, we controlled the spectral characteristics of the imprinted plasmonic devices. The relationship between the structural change of the mold, which was based on etching time, and the optical characteristics of the corresponding plasmonic device was evaluated through experiments and simulations. According to evaluation results, the diameter of the nanopillar was controlled from 248 to 139 nm due to the etching time and formation of a pit structure. Consequently, the spectral properties changed, and responsivity to the surrounding dielectric environment was improved. Therefore, plasmonic devices based on the re-shaped COP mold exhibited a high responsivity to a refractive index of 906 nm/RIU at a wavelength of 625 nm