19 research outputs found

    Effects of Stellar Feedback on Stellar and Gas Kinematics of Star-forming Galaxies at 0.6 < z < 1.0

    Get PDF
    Recent zoom-in cosmological simulations have shown that stellar feedback can flatten the inner density profile of the dark matter halo in low-mass galaxies. A correlation between the stellar/gas velocity dispersion (σ star, σ gas) and the specific star formation rate (sSFR) is predicted as an observational test of the role of stellar feedback in re-shaping the dark matter density profile. In this work we test the validity of this prediction by studying a sample of star-forming galaxies at 0.6 < z < 1.0 from the LEGA-C survey, which provides high signal-to-noise measurements of stellar and gas kinematics. We find that a weak but significant correlation between σ star (and σ gas) and sSFR indeed exists for galaxies in the lowest mass bin (M ∗ ∼ 1010 M o˙). This correlation, albeit with a ∼35% scatter, holds for different tracers of star formation, and becomes stronger with redshift. This result generally agrees with the picture that at higher redshifts star formation rate was generally higher, and galaxies at M ∗ ≲ 1010 M o˙ have not yet settled into a disk. As a consequence, they have shallower gravitational potentials more easily perturbed by stellar feedback. The observed correlation between σ star (and σ gas) and sSFR supports the scenario predicted by cosmological simulations, in which feedback-driven outflows cause fluctuations in the gravitation potential that flatten the density profiles of low-mass galaxies

    Discovery of Strongly Inverted Metallicity Gradients in Dwarf Galaxies at zz\sim2

    Get PDF
    We report the first sub-kiloparsec spatial resolution measurements of strongly inverted gas-phase metallicity gradients in two dwarf galaxies at zz\sim2. The galaxies have stellar masses \sim109M10^9M_\odot, specific star-formation rate \sim20 Gyr1^{-1}, and global metallicity 12+log(O/H)8.112+\log({\rm O/H})\sim8.1 (1/4 solar), assuming the Maiolino et al. (2008) strong line calibrations of OIII/Hb and OII/Hb. Their metallicity radial gradients are measured to be highly inverted, i.e., 0.122±\pm0.008 and 0.111±\pm0.017 dex/kpc, which is hitherto unseen at such small masses in similar redshift ranges. From the Hubble Space Telescope observations of the source nebular emission and stellar continuum, we present the 2-dimensional spatial maps of star-formation rate surface density, stellar population age, and gas fraction, which show that our galaxies are currently undergoing rapid mass assembly via disk inside-out growth. More importantly, using a simple chemical evolution model, we find that the gas fractions for different metallicity regions cannot be explained by pure gas accretion. Our spatially resolved analysis based on a more advanced gas regulator model results in a spatial map of net gaseous outflows, triggered by active central starbursts, that potentially play a significant role in shaping the spatial distribution of metallicity by effectively transporting stellar nucleosynthesis yields outwards. The relation between wind mass loading factors and stellar surface densities measured in different regions of our galaxies shows that a single type of wind mechanism, driven by either energy or momentum conservation, cannot explain the entire galaxy. These sources present a unique constraint on the effects of gas flows on the early phase of disk growth from the perspective of spatially resolved chemical evolution within individual systems.Comment: 20 pages, 13 figures, 3 tables, accepted to ApJ. The accepted version includes a detailed description of extracting and fitting grism 1D/2D spectra (Appendix A) and a comparative study of deriving metallicity gradients using different strong line calibrations (Appendix C
    corecore