36 research outputs found

    Calibration of Super-Kamiokande Using an Electron Linac

    Get PDF
    In order to calibrate the Super-Kamiokande experiment for solar neutrino measurements, a linear accelerator (LINAC) for electrons was installed at the detector. LINAC data were taken at various positions in the detector volume, tracking the detector response in the variables relevant to solar neutrino analysis. In particular, the absolute energy scale is now known with less than 1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM

    The nuclear collective motion

    Full text link
    Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined

    The hidden curve behind COVID-19 outbreak: the impact of delay in treatment initiation in cancer patients and how to mitigate the additional risk of dying—the head and neck cancer model

    No full text
    Purpose: The rapid spread of the SARS-CoV-2 pandemic around the world caused most healthcare services to turn substantial attention to treatment of these patients and also to alter the structure of healthcare systems to address an infectious disease. As a result, many cancer patients had their treatment deferred during the pandemic, increasing the time-to-treatment initiation, the number of untreated patients (which will alter the dynamics of healthcare delivery in the post-pandemic era) and increasing their risk of death. Hence, we analyzed the impact on global cancer mortality considering the decline in oncology care during the COVID-19 outbreak using head and neck cancer, a known time-dependent disease, as a model. Methods: An online practical tool capable of predicting the risk of cancer patients dying due to the COVID-19 outbreak and also useful for mitigation strategies after the peak of the pandemic has been developed, based on a mathematical model. The scenarios were estimated by information of 15 oncological services worldwide, given a perspective from the five continents and also some simulations were conducted at world demographic data. Results: The model demonstrates that the more that cancer care was maintained during the outbreak and also the more it is increased during the mitigation period, the shorter will be the recovery, lessening the additional risk of dying due to time-to-treatment initiation. Conclusions: This impact of COVID-19 pandemic on cancer patients is inevitable, but it is possible to minimize it with an effort measured by the proposed model. © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG
    corecore