69 research outputs found

    Common Variants in MAGI2 Gene Are Associated with Increased Risk for Cognitive Impairment in Schizophrenic Patients

    Get PDF
    Schizophrenia is a complex psychiatric disorder characterized by positive symptoms, negative symptoms, and cognitive impairment. MAGI2, a relatively large gene (∼1.5 Mbps) that maps to chromosome 7q21, is involved in recruitment of neurotransmitter receptors such as AMPA- and NMDA-type glutamate receptors. A genetic association study designed to evaluate the association between MAGI2 and cognitive performance or schizophrenia has not been conducted. In this case-control study, we examined the relationship of single nucleotide polymorphism (SNP) variations in MAGI2 and risk for schizophrenia in a large Japanese sample and explored the potential relationships between variations in MAGI2 and aspects of human cognitive function related to glutamate activity. Based on the result of first schizophrenia genome-wide association study in a Japanese population (JGWAS), we selected four independent SNPs and performed an association study using a large independent Japanese sample set (cases 1624, controls 1621). Wisconsin Card Sorting Test (WCST) was used to evaluate executive function in 114 cases and 91 controls. We found suggestive evidence for genetic association of common SNPs within MAGI2 locus and schizophrenia in Japanese population. Furthermore in terms of association between MAGI2 and cognitive performance, we observed that genotype effect of rs2190665 on WCST score was significant (p = 0.034) and rs4729938 trended toward significance (p = 0.08). In conclusion, although we could not detect strong genetic evidence for association of common variants in MAGI2 and increased schizophrenia risk in a Japanese population, these SNPs may increase risk of cognitive impairment in schizophrenic patients

    Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses

    Get PDF
    Accumulation of thermal energies by highly repeated irradiation of femtosecond laser pulses inside a glass induces the heat-modification whose volume is much larger than that of the photoexcited region. It has been proposed that the heat-modification occurs in the region in which the temperature had overcome a threshold temperature during exposure of laser pulses. In order to understand the mechanism of the heat-modification, we investigated the temperature distribution during laser exposure and the threshold temperature by analyzing the volume of the modification based on a thermal diffusion model. We found that the threshold temperature becomes lower with increasing laser exposure time. The dependence of the threshold temperature on the laser exposure time was explained by the deformation mechanism based on the temperature-dependent viscosity and viscoelastic behavior of a glass under a stress loading by thermal expansion. The deformation mechanism also could simulate a tear-drop shape of a heat-modification by simultaneous double-beams’ irradiation and the distribution of birefringence in a heat-modification. The mechanism proposed in this study means that the temperature-dependence of the viscosity of a glass should be essential for predicting and controlling the heat-modification

    Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates

    Get PDF
    We experimentally determined the three-dimensional temperature distribution and modification mechanism in a soda-lime-silicate glass under irradiation of ultrafast laser pulses at high repetition rates by analyzing the relationship between the morphology of the modification and ambient temperature. In contrast to previous studies, we consider the temperature dependence of thermophysical properties and the nonlinear effect on the absorbed energy distribution along the beam propagation axis in carrying out analyses. The optical absorptivity evaluated with the temperature distribution is approximately 80% and at most 3.5% smaller than that evaluated by the transmission loss measurement. The temperature distribution and the strain distribution indicate that visco-elastic deformation and material flow play important roles in the laser-induced modification inside a glass

    Selective metallization of Ag2O-dope silicate glass by femtosecond laser direct writing

    Get PDF
    We investigated the selective metallization on Ag2O-doped silicate glass under femtosecond laser irradiation after electroless plating. We found, as increasing the laser power, the width of the ablated groove increased from 2.5 to 7.5 µm, and then the resulted new surface could offer an active site for reduction of Cu cations, leading to corresponding plated Cu lines with widths from 7.4 to 25.4 µm. The mechanism was supposed as irradiation of the femtosecond laser (FL) on Ag2O doped silicate glass surfaces result in the reduction of silver ions, and consequently, then the formation of silver atoms or even silver nanoparticles became the seeds for the next electroless plating process
    corecore