130 research outputs found
A longitudinal study of impact and early stance loads during gait following arthroscopic partial meniscectomy
People following arthroscopic partial medial meniscectomy (APM) are at increased risk of developing knee osteoarthritis. High impact loading and peak loading early in the stance phase of gait may play a role in the pathogenesis of knee osteoarthritis. This was a secondary analysis of longitudinal data to investigate loading-related indices at baseline in an APM group (3 months post-surgery) and a healthy control group, and again 2 years later (follow-up). At baseline, 82 participants with medial APM and 38 healthy controls were assessed, with 66 and 23 re-assessed at follow-up, respectively. Outcome measures included: (i) heel strike transient (HST) presence and magnitude, (ii) maximum loading rate, (iii) peak vertical force (Fz) during early stance. At baseline, maximum loading rate was lower in the operated leg (APM) and non-operated leg (non-APM leg) compared to controls (p≤0.03) and peak Fz was lower in the APM leg compared to non-APM leg (p≤0.01). Over 2 years, peak Fz increased in the APM leg compared to the non-APM leg and controls (p≤0.01). Following recent APM, people may adapt their gait to protect the operated knee from excessive loads, as evidenced by a lower maximum loading rate in the APM leg compared to controls, and a reduced peak Fz in the APM leg compared to the non-APM leg. No differences at follow-up may suggest an eventual return to more typical gait. However, the increase in peak Fz in the APM leg may be of concern for long-term joint health given the compromised function of the meniscus
Mechanisms underpinning longitudinal increases in the knee adduction moment following arthroscopic partial meniscectomy
Background
Knee osteoarthritis is common following arthroscopic partial meniscectomy and a higher external peak knee adduction moment is believed to be a contributor. The peak knee adduction moment has been shown to increase over 2 years (from 3-months post-arthroscopic partial meniscectomy). The aim of this study was to evaluate mechanisms underpinning the increase in peak knee adduction moment over 2 years observed in people 3-months following arthroscopic partial meniscectomy.
Methods
Sixty-six participants with medial arthroscopic partial meniscectomy were assessed at baseline and again 2 years later. Parameters were evaluated at time of peak knee adduction moment as participants walked barefoot at their self-selected normal and fast pace for both time points.
Findings
For normal pace walking, an increase in frontal plane ground reaction force-to-knee lever arm accounted for 30% of the increase in peak knee adduction moment (B = 0.806 [95% CI 0.501–1.110], P < 0.001). For fast pace walking, an increase in the frontal plane ground reaction force magnitude accounted for 21% of the increase in peak knee adduction moment (B = 2.343 [95% CI 1.219–3.468], P < 0.001); with an increase in tibia varus angle accounting for a further 15% (B = 0.310 [95% CI 0.145–0.474], P < 0.001).
Interpretation
Our data suggest that an increase in lever arm and increase in frontal plane ground reaction force magnitude are contributors to the increased knee adduction moment observed over time in people following arthroscopic partial meniscectomy
Which clinical research questions are the most important? Development and preliminary validation of the Australia & New Zealand Musculoskeletal (ANZMUSC) Clinical Trials Network Research Question Importance Tool (ANZMUSC-RQIT).
Background and aims High quality clinical research that addresses important questions requires significant resources. In resource-constrained environments, projects will therefore need to be prioritized. The Australia and New Zealand Musculoskeletal (ANZMUSC) Clinical Trials Network aimed to develop a stakeholder-based, transparent, easily implementable tool that provides a score for the 'importance' of a research question which could be used to rank research projects in order of importance. Methods Using a mixed-methods, multi-stage approach that included a Delphi survey, consensus workshop, inter-rater reliability testing, validity testing and calibration using a discrete-choice methodology, the Research Question Importance Tool (ANZMUSC-RQIT) was developed. The tool incorporated broad stakeholder opinion, including consumers, at each stage and is designed for scoring by committee consensus. Results The ANZMUSC-RQIT tool consists of 5 dimensions (compared to 6 dimensions for an earlier version of RQIT): (1) extent of stakeholder consensus, (2) social burden of health condition, (3) patient burden of health condition, (4) anticipated effectiveness of proposed intervention, and (5) extent to which health equity is addressed by the research. Each dimension is assessed by defining ordered levels of a relevant attribute and by assigning a score to each level. The scores for the dimensions are then summed to obtain an overall ANZMUSC-RQIT score, which represents the importance of the research question. The result is a score on an interval scale with an arbitrary unit, ranging from 0 (minimal importance) to 1000. The ANZMUSC-RQIT dimensions can be reliably ordered by committee consensus (ICC 0.73-0.93) and the overall score is positively associated with citation count (standardised regression coefficient 0.33, p<0.001) and journal impact factor group (OR 6.78, 95% CI 3.17 to 14.50 for 3rd tertile compared to 1st tertile of ANZMUSC-RQIT scores) for 200 published musculoskeletal clinical trials. Conclusion We propose that the ANZMUSC-RQIT is a useful tool for prioritising the importance of a research question.William J. Taylor, Robin Willink, Denise A. O, Connor, Vinay Patel, Allison Bourne, Ian A. Harris, Samuel L. Whittle, Bethan Richards, Ornella Clavisi, Sally Green, Rana S. Hinman, Chris G. Maher, Ainslie Cahill, Annie McPherson, Charlotte Hewson, Suzie E. May, Bruce Walker, Philip C. Robinson, Davina Ghersi, Jane Fitzpatrick, Tania Winzenberg, Kieran Fallon, Paul Glasziou, Laurent Billot, Rachelle Buchbinde
- …