3,879 research outputs found
Impact wave deposits provide new constraints on the location of the K/T boundary impact
All available evidence is consistent with an impact into oceanic crust terminating the Cretaceous Period. Although much of this evidence is incompatible with an endogenic origin, some investigators still feel that a volcanic origin is possible for the Cretaceous/Tertiary (K/T) boundary clay layers. The commonly cited evidence for a large impact stems from delicate clay layers and their components and the impact site has not yet been found. Impact sites have been suggested all over the globe. The impact is felt to have occurred near North America by: the occurrence of a 2 cm thick ejecta layer only at North American locales, the global variation of shocked quartz grain sizes peaking in North America, the global variation of spinel compositions with most refractory compositions occurring in samples from the Pacific region and possibly uniquely severe plant extinctions in the North American region. The K/T boundary interval was investigated as preserved on the banks of the Brazos River, Texas. The K/T fireball and ejecta layers with associated geochemical anomalies were found interbedded with this sequence which apparently allows a temporal resolution 4 orders of magnitude greater than typical K/T boundary sections. A literature search reveals that such coarse deposits are widely preserved at the K/T boundary. Impact wave deposits have not been found elsewhere on the globe, suggesting the impact occurred between North and South America. The coarse deposits preserved in Deep Sea Drilling Project (DSDP) holes 151-3 suggest the impact occurred nearby. Subsequent tectonism has complicated the picture
Provenance of the K/T boundary layers
An array of chemical, physical and isotopic evidence indicates that an impact into oceanic crust terminated the Cretaceous Period. Approximately 1500 cu km of debris, dispersed by the impact fireball, fell out globally in marine and nonmarine environments producing a 2 to 4 mm thick layer (fireball layer). In North American locales, the fireball layer overlies a 15 to 25 mm thick layer of similar but distinct composition. This 15 to 25 mm layer (ejecta layer) may represent approximately 1000 cu km of lower energy ejecta from a nearby impact site. Isotopic and chemical evidence supports a mantle provenance for the bulk of the layers. The extraordinary REE pattern of the boundary clays was modelled as a mixture of oceanic crust, mantle, and approximately 10 percent continental material. The results are presented. If the siderophiles of the ejecta layer were derived solely from the mantle, a test may be available to see if the siderophile element anomaly of the fireball layer had an extraterrestrial origin. Radiogenic Os-187 is depleted in the mantle relative to an undifferentiated chondritic source. Os-187/Os-186 ratios of 1.049 and 1.108 were calculated for the ejecta and fireball layers, respectively
The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies
We present CO observations of a large sample of ultraluminous IR galaxies out
to z = 0.3. Most of the galaxies are interacting, but not completed mergers.
All but one have high CO(1-0) luminosities, log(Lco [K-km/s-pc^2]) = 9.92 +/-
0.12. The dispersion in Lco is only 30%, less than that in the FIR luminosity.
The integrated CO intensity correlates Strongly with the 100 micron flux
density, as expected for a black body model in which the mid and far IR
radiation are optically thick. We use this model to derive sizes of the FIR and
CO emitting regions and the enclosed dynamical masses. Both the IR and CO
emission originate in regions a few hundred parsecs in radius. The median value
of Lfir/Lco = 160 Lsun/(K-km/s-pc^2), within a factor of two of the black body
limit for the observed FIR temperatures. The entire ISM is a scaled up version
of a normal galactic disk with densities a factor of 100 higher, making even
the intercloud medium a molecular region. Using three different techniques of
H2 mass estimation, we conclude that the ratio of gas mass to Lco is about a
factor of four lower than for Galactic molecular clouds, but that the gas mass
is a large fraction of the dynamical mass. Our analysis of CO emission reduces
the H2 mass from previous estimates of 2-5e10 Msun to 0.4-1.5e10 Msun, which is
in the range found for molecular gas rich spiral galaxies. A collision
involving a molecular gas rich spiral could lead to an ultraluminous galaxy
powered by central starbursts triggered by the compression of infalling
preexisting GMC's.Comment: 34 pages LaTeX with aasms.sty, 14 Postscript figures, submitted to
ApJ Higher quality versions of Figs 2a-f and 7a-c available by anonymous FTP
from ftp://sbast1.ess.sunysb.edu/solomon/
Viking navigation
A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented
Massive Quiescent Cores in Orion. -- II. Core Mass Function
We have surveyed submillimeter continuum emission from relatively quiescent
regions in the Orion molecular cloud to determine how the core mass function in
a high mass star forming region compares to the stellar initial mass function.
Such studies are important for understanding the evolution of cores to stars,
and for comparison to formation processes in high and low mass star forming
regions. We used the SHARC II camera on the Caltech Submillimeter Observatory
telescope to obtain 350 \micron data having angular resolution of about 9
arcsec, which corresponds to 0.02 pc at the distance of Orion. Our analysis
combining dust continuum and spectral line data defines a sample of 51 Orion
molecular cores with masses ranging from 0.1 \Ms to 46 \Ms and a mean mass of
9.8 \Ms, which is one order of magnitude higher than the value found in typical
low mass star forming regions, such as Taurus. The majority of these cores
cannot be supported by thermal pressure or turbulence, and are probably
supercritical.They are thus likely precursors of protostars. The core mass
function for the Orion quiescent cores can be fitted by a power law with an
index equal to -0.850.21. This is significantly flatter than the Salpeter
initial mass function and is also flatter than the core mass function found in
low and intermediate star forming regions. Thus, it is likely that
environmental processes play a role in shaping the stellar IMF later in the
evolution of dense cores and the formation of stars in such regions.Comment: 30 pages, 10 figures, accepted by Ap
Continuum and CO/HCO+ Emission from the Disk Around the T Tauri Star LkCa 15
We present OVRO Millimeter Array lambda = 3.4 - 1.2 mm dust continuum and
spectral line observations of the accretion disk encircling the T Tauri star
LkCa 15. The 1.2 mm dust continuum emission is resolved, and gives a minimum
diameter of 190 AU and an inclination angle of 57+/-5 degrees. There is a
noticeable, but at present poorly constrained, decrease in the continuum
spectral slope with frequency that may result from the coupled processes of
grain growth and dust settling. Imaging of the fairly intense emission from the
lowest rotational transitions of CO, 13CO and HCO+ reveals a rotating disk and
emission extends to 750 AU and the characteristic radius of the disk is
determined to be around 425 AU (HWHM) based on model fits to the CO velocity
field. The disk mass derived from the CO isotopologues with ``typical'' dense
cloud abundances is still nearly two orders of magnitude less than that
inferred from the dust emission, which is probably due to extensive molecular
depletion in the cold, dense disk midplane. N2H+ 1-0 emission has also been
detected which, along with HCO+, sets a lower limit to the fractional
ionization of 10^{-8} in the near-surface regions of protoplanetary disks. This
first detection of N2H+ in circumstellar disks has also made possible a
determination of the N2/CO ratio (~2) that is at least an order of magnitude
larger than those in the envelopes of young stellar objects and dense clouds.
The large N2/CO ratio indicates that our observations probe disk layers in
which CO is depleted but some N2 remains in the gas phase. Such differential
depletion can lead to large variations in the fractional ionization with height
in the outer reaches of circumstellar disks, and may help to explain the
relative nitrogen deficiency observed in comets.Comment: Submitted to ApJ, 28 pages, 7 figure
L1551NE - Discovery of a Binary Companion
L1551NE is a very young (class 0 or I) low-mass protostar located close to
the well-studied L1551 IRS5. We present here evidence, from 1.3mm continuum
interferometric observations at ~1'' resolution, for a binary companion to
L1551NE. The companion, whose 1.3mm flux density is ~1/3 that of the primary
component, is located 1.43'' (~230 A.U. at 160pc) to the southeast. The
millimeterwave emission from the primary component may have been just barely
resolved, with deconvolved size ~0.82"x0.70" (~131x112 A.U.). The companion
emission was unresolved (<100 A.U.). The pair is embedded within a flattened
circum-binary envelope of size ~5.4'' x 2.3'' (~860 x 370 A.U.). The masses of
the three components (i.e. from the cicumstellar material of the primary star
and its companion, and the envelope) are approximately 0.044, 0.014 and 0.023
Mo respectively.Comment: 8 pages, 1 figur
High Mass Star Formation. II. The Mass Function of Submillimeter Clumps in M17
We have mapped an approximately 5.5 by 5.5 pc portion of the M17 massive
star-forming region in both 850 and 450 micron dust continuum emission using
the Submillimeter Common-User Bolometer Array (SCUBA) on the James Clerk
Maxwell Telescope (JCMT). The maps reveal more than 100 dusty clumps with
deconvolved linear sizes of 0.05--0.2 pc and masses of 0.8--120 solar masses,
most of which are not associated with known mid-infrared point sources. Fitting
the clump mass function with a double power law gives a mean power law exponent
of alpha_high = -2.4 +/- 0.3 for the high-mass power law, consistent with the
exponent of the Salpeter stellar mass function. We show that a lognormal clump
mass distribution with a peak at about 4 solar masses produces as good a fit to
the clump mass function as does a double power law. This 4 solar mass peak mass
is well above the peak masses of both the stellar initial mass function and the
mass function of clumps in low-mass star-forming regions. Despite the
difference in intrinsic mass scale, the shape of the M17 clump mass function
appears to be consistent with the shape of the core mass function in low-mass
star-forming regions. Thus, we suggest that the clump mass function in
high-mass star-forming regions may be a scaled-up version of that in low-mass
regions, instead of its extension to higher masses.Comment: 33 pages, 6 figures, 3 tables. Accepted for publication in the
Astrophysical Journa
Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy
Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven
to be an excellent tool for studying the physical properties of dust, molecular
clouds, and magnetic fields in the interstellar medium. Although these
wavelengths are only observable from airborne or space-based platforms, no
first-generation instrument for the Stratospheric Observatory for Infrared
Astronomy (SOFIA) is presently designed with polarimetric capabilities. We
study several options for upgrading the High-resolution Airborne Wideband
Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer
camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at
diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an
external set of optics which modulates the polarization state of the incoming
radiation before entering the cryostat window; (2) internal polarizing optics;
and (3) a replacement of the current detector array with two state-of-the-art
superconducting bolometer arrays, an upgrade of the HAWC camera as well as
polarimeter. We discuss a range of science studies which will be possible with
these upgrades including magnetic fields in star-forming regions and galaxies
and the wavelength-dependence of polarization.Comment: 12 pages, 5 figure
- …