1,273 research outputs found
Manipulation of a Bose-Einstein condensate by a time-averaged orbiting potential using phase jumps of the rotating field
We report on the manipulation of the center-of-mass motion (`sloshing') of a
Bose Einstein condensate in a time-averaged orbiting potential (TOP) trap. We
start with a condensate at rest in the center of a static trapping potential.
When suddenly replacing the static trap with a TOP trap centered about the same
position, the condensate starts to slosh with an amplitude much larger than the
TOP micromotion. We show, both theoretically and experimentally, that the
direction of sloshing is related to the initial phase of the rotating magnetic
field of the TOP. We show further that the sloshing can be quenched by applying
a carefully timed and sized jump in the phase of the rotating field.Comment: 11 pages, 9 figure
Influence of radiative interatomic collisions on an atom laser
We discuss the role of light absorption by pairs of atoms (radiative
collisions) in the context of a model for an atom laser. The model is applied
to the case of VSCPT cooling of metastable triplet helium. We show that,
because of radiative collisions, for positive detuning of the driving light
fields from an atomic resonance the operating conditions for the atom laser can
only be marginally met. It is shown that the system only behaves as an atom
laser if a very efficient sub-Doppler precooling mechanism is operative. In the
case of negative frequency detuning the requirements on this sub-Doppler
mechanism are less restricting, provided one avoids molecular resonances.Comment: 19 pages, 2 Postscript figure
Adiabatically changing the phase-space density of a trapped Bose gas
We show that the degeneracy parameter of a trapped Bose gas can be changed
adiabatically in a reversible way, both in the Boltzmann regime and in the
degenerate Bose regime. We have performed measurements on spin-polarized atomic
hydrogen in the Boltzmann regime demonstrating reversible changes of the
degeneracy parameter (phase-space density) by more than a factor of two. This
result is in perfect agreement with theory. By extending our theoretical
analysis to the quantum degenerate regime we predict that, starting close
enough to the Bose-Einstein phase transition, one can cross the transition by
an adiabatic change of the trap shape.Comment: 4 pages, 3 figures, Latex, submitted to PR
Sagittal knee kinematics in relation with the posterior tibia slope during jump landing after an anterior cruciate ligament reconstruction
PURPOSE: An increased posterior tibia plateau angle is associated with increased risk for anterior cruciate ligament injury and re-rupture after reconstruction. The aims of this study were to determine whether the tibia plateau angle correlates with dynamic anterior tibia translation (ATT) after an anterior cruciate ligament reconstruction and whether the tibia plateau angle correlates with aspects of knee kinematics and kinetics during jump landing. METHODS: Thirty-seven patients after anterior cruciate ligament reconstruction with autograft hamstring tendon were included. Knee flexion angle and knee extension moment during single leg hops for distance were determined using a motion capture system and the dynamic ATT with its embedded method. The medial and lateral posterior tibia plateau angle were measured using MRI. Moreover, passive ATT was measured using the KT-1000 arthrometer. RESULTS: A weak negative correlation was found between the maximal dynamic ATT and the medial tibia plateau angle (p = 0.028, r = - 0.36) and between the maximal knee flexion angle and the lateral tibia plateau angle (p = 0.025, r = - 0.37) during landing. Patients with a smaller lateral tibia plateau angle show larger maximal knee flexion angle during landing than the patients with larger lateral tibia plateau angle. Also, the lateral tibia plateau angle is associated the amount of with muscle activity. CONCLUSION: The posterior medical tibia plateau angle is associated with dynamic ATT. The maximal knee flexion angle and muscle activity are associated with the posterior lateral tibia plateau angle. LEVEL OF EVIDENCE: III
Copers and Noncopers Use Different Landing Techniques to Limit Anterior Tibial Translation After Anterior Cruciate Ligament Reconstruction
Background: At 1 year after anterior cruciate ligament reconstruction (ACLR), two-thirds of patients manage to return to sports (copers), whereas one-third of patients do not return to sports (noncopers). Copers and noncopers have different muscle activation patterns, and noncopers may not be able to control dynamic anterior tibial translation (ATTd) as well as copers. Purpose/Hypothesis: To investigate whether (1) there is a positive correlation between passive ATT (ATTp; ie, general joint laxity) and ATTd during jump landing, (2) whether ATTd is moderated by muscle activating patterns, and (3) whether there is a difference in moderating ATTd between copers and noncopers. We hypothesized that patients who have undergone ACLR compensate for ATTd by developing muscle strategies that are more effective in copers compared with noncopers. Study Design: Controlled laboratory study. Methods: A total of 40 patients who underwent unilateral ACLR performed 10 single-leg hops for distance with both legs. Lower body kinematic and kinetic data were measured using a motion-capture system, and ATTd was determined with an embedded method. Muscle activity was measured using electromyographic signals. Bilateral ATTp was measured using a KT-1000 arthrometer. In addition, the Beighton score was obtained. Results: There was no significant correlation between ATTp and ATTd in copers; however, there was a positive correlation between ATTp and ATTd in the operated knee of noncopers. There was a positive correlation between the Beighton score and ATTp as well as between the Beighton score and ATTd in both copers and noncopers in the operated knee. Copers showed a negative correlation between ATTd and gastrocnemius activity in their operated leg during landing. Noncopers showed a positive correlation between ATTd and knee flexion moment in their operated knee during landing. Conclusion: Copers used increased gastrocnemius activity to reduce ATTd, whereas noncopers moderated ATTd by generating a smaller knee flexion moment
Atomic Deuterium Adsorbed on the Surface of Liquid Helium
We investigate deuterium atoms adsorbed on the surface of liquid helium in
equilibrium with a vapor of atoms of the same species. These atoms are studied
by a sensitive optical method based on spectroscopy at a wavelength of 122 nm,
exciting the 1S-2P transition. We present a direct measurement of the
adsorption energy of deuterium atoms on helium and show evidence for the
existence of resonantly enhanced recombination of atoms residing on the surface
to molecules.Comment: 6 pages 4 figure
NMR imaging of the soliton lattice profile in the spin-Peierls compound CuGeO_3
In the spin-Peierls compound CuGeO, the commensurate-incommensurate
transition concerning the modulation of atomic position and the local
spin-polarization is fully monitored at T=0 by the application of an external
magnetic field () above a threshold value 13 Tesla. The
solitonic profile of the spin-polarization, as well as its absolute magnitude,
has been precisely imaged from NMR lineshapes obtained for
varying from 0.0015 to 2. This offers a unique possibility
to test quantitatively the various numerical and analytical methods developed
to solve a generic Hamiltonian in 1-D physics, namely strongly interacting
fermions in presence of electron-phonon coupling at arbitrary band filling.Comment: 3 pages, 4 eps figures, RevTeX, submitted to Physical Review Lette
Competition and coexistence of bond and charge orders in (TMTTF)2AsF6
(TMTTF)2AsF6 undergoes two phase transitions upon cooling from 300 K. At
Tco=103 K a charge-ordering (CO) occurs, and at Tsp(B=9 T)=11 K the material
undergoes a spin-Peierls (SP) transition. Within the intermediate, CO phase,
the charge disproportionation ratio is found to be at least 3:1 from carbon-13
NMR 1/T1 measurements on spin-labeled samples. Above Tsp, up to about 3Tsp,
1/T1 is independent of temperature, indicative of low-dimensional magnetic
correlations. With the application of about 0.15 GPa pressure, Tsp increases
substantially, while Tco is rapidly suppressed, demonstrating that the two
orders are competing. The experiments are compared to results obtained from
calculations on the 1D extended Peierls-Hubbard model.Comment: 4 pages, 5 figure
Modulated Phases in Spin-Peierls Systems
Lattice modulations in the high magnetic field phase and close to impurities
in spin-Peierls systems are considered and compared to experiment. Necessary
extensions of existing theories are proposed. The influence of zero-point
fluctuations on magnetic amplitudes is shown.Comment: 10 pages, 4 figures included, to appear in Advances in Solid State
Physics/Festkoerperprobleme Spring Conference 1999 of the DP
- …