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Influence of radiative interatomic collisions on dark-state cooling

T. W. Hijmans,1 G. V. Shlyapnikov,1,2 and A. L. Burin2
1Van der Waals–Zeeman Institute, University of Amsterdam, Valckenierstraat 65-67, 1018 XE Amsterdam, The Netherlands

2Russian Research Center Kurchatov Institute, Kurchatov Square, 123182 Moscow, Russia
~Received 13 May 1996!

We discuss the role of light absorption by pairs of atoms~radiative collisions! in the context of a model for
velocity selective coherent population trapping with emphasis on its application to metastable triplet helium.
Our main interest is the application of such dark-state cooling schemes to the regime where individual quantum
states get multiply occupied, a regime which is sometimes referred to with the term atom laser. We show that,
because of radiative collisions, for positive detuning of the driving light fields from an atomic resonance the
conditions for proliferation of the occupation numbers of the lowest lying states can only be marginally met.
Multiple occupation of these states only occurs if a very efficient sub-Doppler precooling mechanism is
operative. In the case of negative frequency detuning the requirements on this sub-Doppler mechanism are less
restricting, provided one avoids molecular resonances.@S1050-2947~96!07211-3#

PACS number~s!: 32.80.Pj, 33.80.2b

I. INTRODUCTION

The investigation of macroscopic quantum phenomena is
one of the prime motivations for the study of ultracold
atomic gases. Recent successful experiments on Bose-
Einstein condensation~BEC! in trapped rubidium @1#,
lithium @2#, and sodium@3# gave a tremendous boost to this
field of research. The breakthrough leading to the achieve-
ment of BEC was the implementation of evaporative cooling
schemes, where cooling and thermal quasiequilibrium are
provided by interatomic elastic collisions. It is important that
interaction between atoms also governs the formation kinet-
ics of a Bose condensate@4#.

A principal question with regard to quantum statistical
effects concerns the possibility to reach large or even mac-
roscopic occupation numbers for a single-particle state in a
collisionless Bose gas, where cooling and phase-space com-
pression proceed through interaction of atoms with light
rather than through interatomic collisions. The central idea is
to exploit the bosonic nature of the particles: once the occu-
pation number of a single-particle state becomes larger than
unity, this enhances the rate at which the state is filled and
strongly influences the population dynamics@5,6#. This is
equivalent to the gain mechanism in lasers. Accordingly, the
term ‘‘atom laser’’@7–10# has been coined to describe a gas
far from thermal equilibrium, with atoms accumulating in a
single quantum state or at least in a very small region of
phase space. In this paper we will use the term atom laser in
this sense, namely, to indicate the fact that low-lying atomic
states acquire potentially large occupation numbers through
radiative processes rather than elastic interatomic collisions.
We will refer to such a gas as being in the collisionless
regime, meaning that ordinary elastic collisions are essen-
tially absent and the states are not necessarily occupied ac-
cording to a thermal distribution.

Optical cooling of a gas in the collisionless regime re-
quires the condition

n|3!1, ~1!

wheren is the gas density and 2p| the wavelength of light.
In the opposite limiting case the evolution of excited atomic
states is mainly governed by interatomic collisions induced
by resonance dipole interaction@11#. These collisions pro-
ceed at a rate much larger than the rate of spontaneous emis-
sion and destroy cooling. In view of Eq.~1!, to achieve oc-
cupation numbers of the order of unity or larger the atoms
should gather in a momentum range smaller than the single
photon recoil. Cooling schemes based on dark states, such as
velocity selective coherent population trapping~VSCPT!
@12–14# or schemes involving Raman pumping between dif-
ferent hyperfine states@15# can be used for this purpose.
Whatever the scheme chosen, it will necessarily involve laser
fields which drive the pumping, and hence spontaneous
emission which, under certain conditions, can lead to com-
pression of atoms in momentum space. Reabsorption of
spontaneously emitted photons, destroying the momentum-
space compression, can be, hopefully, circumvented by se-
lecting a high-frequency detuning of driving light@7# or by
choosing at least one of the sample dimensions smaller than
the mean free path of a photon. Such geometrical means of
reducing the effect of multiple reabsorption were success-
fully exploited in the optical cooling of atomic hydrogen@16#
and have been discussed in the context of atom lasers@17#.

Exchange of longitudinal virtual photons between excited
and ground-state atoms leads to resonance dipole interaction.
The influence of the mean field of this interaction on VSCPT
cooling was found small under the condition Eq.~1! @18#.
We will consider the case where the frequency detuningd of
the laser fields from resonance with an excited state is large
compared to the natural line widthG of this state. In this case
resonance dipole interaction manifests itself in interatomic
pair collisions ~see, e.g.,@19#!. At interparticle distances
where resonance dipole interaction compensates the fre-
quency detuning a colliding pair is resonant with the light.
This is the origin of the well known process of light absorp-
tion in pair collisions, which we will refer to as radiative
collisions. Of particular interest is the limit of ultracold col-
lisions, reviewed in, e.g., Ref.@20#.
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At ultralow temperatures corresponding to thes-wave
scattering limit, under the condition of Eq.~1! the rate of
radiative collisions is normally much smaller than the rate of
absorption of light by single atoms. The situation changes
drastically for atoms in so-called dark states which are de-
coupled from the driving light field. In this case the coupling
of the dark-state atoms with the driving light is induced by
their radiative collisions with the atoms in coupled states.
This process, unlike reabsorption of spontaneously emitted
photons, can not be eliminated by arranging the sample ge-
ometry. In this paper we argue that forudu@G at any gas
density the phase-space compression to occupation numbers
larger than unity can be frustrated by this type of radiative
collisions. The physical reason that these collisions can be
important even in a very dilute gas is the following: If we
consider a small sphere of radiusp̃ aroundp50 in momen-
tum space, the filling rate of this momentum region from the
gas cloud of spatial densityn is roughly proportional to
@11n( p̃)# p̃3n, wheren( p̃) is the characteristic occupation
number of momentum states in the small sphere. The colli-
sional loss of atoms from this sphere is proportional to
n( p̃) p̃3n. The ratio of filling to loss rate, being large for
small occupation numbers, decreases with increasingn( p̃)
and tends to a constant forn( p̃).1. The key point is that
both the filling rate and the rate of radiative collisions de-
pend on the degree of excitation of the atoms in a similar
way. However, the phase space available for the filling is
ultimately set by the momentum change in the last spontane-
ous emission event, i.e., the photon momentum, whereas the
phase space available for collisions can be much larger. In
view of this the question whether radiative collisions can
prevent the occupation numbers from reaching unity is prin-
cipal.

We will analyze a simple general model for an atom laser
which includes radiative collisions and apply the results to
VSCPT cooling on aJ51 to J51 transition, successfully
used to cool helium atoms in the metastable 23S1 state to
below the recoil energy@12–14#. For this scheme we discuss
both the case of large positive and large negative detuning
and show that the latter case is more promising for realizing
an atom laser.

II. GENERAL SCHEME

We consider a general scheme for an atom laser, such as
presented in Ref.@7#. This scheme is depicted in Fig. 1. All
atoms are confined to a volume much larger than the optical
wavelength and such that the eigenstates of the translational
motion of the atoms are~approximate! momentum eigen-
states. We have two sets of atomic states called the system
~labeleds) and bath~labeledb). The systems comprises just
the atoms in the compressed momentum space described
above. The laser fields are tuned close to a resonance involv-
ing an excited atomic statee, which optically pumps the
atoms from the bath into the system. In Fig. 1 the pumping
scheme is schematically represented as a single transition
connecting the bath states to the excited state followed by
spontaneous emission into the system states, although in
practice the pumping scheme can be more complicated.
Spontaneous emission makes the atom end up in a system
state with momentump, chosen so to say ‘‘by chance’’ as a

result of the random direction of the emitted photon. As the
focus of this paper is the role of radiative collisions with bath
atoms, we omit all other potential loss mechanisms~in con-
trast to, e.g., Ref.@7#! such as decay of the system states due
to absorption of spontaneously emitted photons. Then the
rate equation for the occupation numbersns(p) of the system
states with momentump takes the form:

ṅs~p!52Gs~p!ns~p!1@11ns~p!#

3E dq

8p3nb~q!Gb~q!P~p,q!

2ns~p!E dq

8p3G~p,q!nb~q!. ~2!

The first term denotes the loss rate of isolated atoms in the
system due to the presence of the light fields. It involves
optical pumping from the system states back into the bath.
Clearly it is advantageous if the lifetime of systems states
increases with decreasing momentum. We will assume that
this repumping rate vanishes quadratically with momentum
for smallp: Gs(p)5G̃(p/p* )

2. Such a quadratic dependence
is naturally encountered in schemes based on VSCPT or on
velocity selective Raman pumping. The regionp,p* can be
called a trap in momentum space. The second term in Eq.~2!
is the pumping rate from bath states into the system. Here
Gb(q) is the probability per unit time that an atom leaves the
bath state having momentumq, nb(q) is the occupation
number of the corresponding bath state, andP(p,q) is the
probability density for a bath atom with momentumq to end
up in a system state with momentump after a spontaneous
emission event. The prefactor 11ns(p) in the second term is
the Bose enhancement factor which is responsible for the
‘‘lasing’’ process. The third term in Eq.~2! is the focus of
this paper. It describes the absorption and subsequent reemis-

FIG. 1. Schematic depiction of the atom laser model. The bath
and the system states are denotedb ands, respectively. The pump-
ing rate from the bath states isGb and the repumping from the
system back into the bath is denoted byGs . We assume thatGs

vanishes for zero momentum. The wiggly line represents a sponta-
neously emitted photon. The excited state involved in the process is
denoted ase and its inverse lifetime isG.
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sion of a photon from the laser fields in a collision between
the system atom and the bath atom. As the photon absorption
strongly changes the relative motion of colliding atoms, such
radiative collisions will be a loss mechanism for system at-
oms trapped in the space of low momentap,p* . For large
frequency detuningd the rate constant of radiative collisions
G(p,q) becomes momentum independent and can be written
asG5bG̃|3. The cubic dependence on|, and the propor-
tionality to G̃ are a consequence of the resonant dipole inter-
action. The coefficientb depends ond, the Rabi frequency
and details of the level structure.

In view of Eq.~1! it is natural to assume that the momen-
tum trap sizep*,k, wherek is the photon momentum. In
order to simplify the picture we describe the bath by intro-
ducing a spherepmax in momentum space, with the bath
occupation numbers independent ofp for p,pmax and zero
otherwise. AlsoGb is momentum independent. Accordingly,
nb(q)[nbLb

3 , wherenb is the real space density of bath
atoms, and their De Broglie wavelengthLb5(6p2)1/3/
pmax. In a nonthermal gas, the kinetic energy of bath atoms
is maintained by a dissipative optical cooling mechanism and
thus higher than the recoil energy, i.e.,pmax.k. Since the
momentum change during spontaneous emission is of order
k andp*,k, the integral in the second term of Eq.~2! can
be written asaGbnbLb

3 , wherea is a numerical coefficient
which depends on the cooling scheme and the level structure
of the atoms. WithGb'G̃, the rate equation~2! now reduces
to:

ṅs~p!5G̃F2S p

p*
D 2ns~p!1anbLb

3@11ns~p!#

2bns~p!nb|
3G . ~3!

We introduce the parameterh[(aLb
3)/(b|3). Apart from

the ratioa/b, the parameterh essentially denotes the ratio
of the recoil energyEr5k2/2m (\ is set equal to unity
throughout! to the bath ‘‘temperature’’Tb;2p/mLb

2 . As
we necessarily haveT.Er (Lb,|) we may expecth to be
less than unity. Forh,1 we find a steady state solution for
the occupation numbers in the trap:

ns~p!5h/@~p/p* !2/bnb|
31~12h!#. ~4!

The maximum occupation number is achieved forp→0. It is
smaller than unity unlessh is very close to 1. The fraction of
particles accumulated in the momentum-space trap is of the
order of (p* /pmax)

3!1, hence forh,1 the atoms predomi-
nantly remain in bath states.

In the caseh.1 there is no steady state solution. The
occupation numbers of states with (p/p* )

2,(h21)bnb|
3

grow exponentially, with a characteristic inverse growth time
G̃(h21)bnb|

32G̃(p/p* )
2. We have an atom laser. There is

no threshold due to the fact that we omitted all loss mecha-
nisms except radiative collisions. Ultimately the bath will be
depleted and the above approximations break down. Clearly,
two criteria have to be met in order to make the atom laser
work: in order to haveh.1 the prefactorb which governs

radiative collisions should be much smaller thana and the
bath temperature should be kept as close toEr as possible.

III. APPLICATION TO He *

We will apply the general scheme for the atom laser de-
scribed above to the case of VSCPT cooling of He in the
metastable 23S state~He* ). In Fig. 2 we show the relevant
levels involved in VSCPT cooling of He* . For simplicity we
will first consider a one-dimensional picture and later gener-
alize it to 3D. The model in the previous section relates only
to the 3D case. The 1D calculation presented here is not
meant as a 1D variant of this model but serves only to obtain
numerical results which we will show to be independent of
the dimension and which we will subsequently use in the
generalization to 3D.

In the 1D VSCPT case the sample is irradiated with a
s1 and as2 polarized beam propagating in the positive and
negativez direction, respectively. The Hamiltonian of inter-
action of an isolated atom with the light field has six eigen-
states. Optical pumping ensures that after a comparatively
short time only three of the states in Fig. 2 remain populated
@12#. In the absence of light the wave functions of two of
these states can be written in the form:

xc,u~p!5
1

A2
@x1exp$ i ~p1k!•R%6x21exp$ i ~p2k!•R%#.

~5!

Here the labelsc and u stand for coupled and uncoupled
states, the plus sign relating toxc(p) ~using the phase con-
vention of Ref.@12#!. The atom coordinate and momentum
areR andp, andxM is the wave function of the 23S atomic
state with spin projectionM on the direction of light propa-
gation, which we select as quantization axis. The statex0 in
Fig. 2 is depopulated by optical pumping. The statesx1 and
x21 are coupled by thes2 ands1 beams, respectively, to
the excited 23P1 statef0, with zero projection of the total
electron angular momentum. The wave function of this state
can be written asf0(p)5f0exp(ip•R).

The statexu(p) is called uncoupled because in the limit
of p→0 it is completely decoupled from the driving light
fields. The ratesGc andGu at whichxc(p) andxu(p) scatter
photons are given by@12#:

FIG. 2. Level scheme involved in VSCPT cooling of He* . The
lower manifold is 23S1, the upper is 23P1. The numbers are the
nonzero Clebsch-Gordan coefficients.
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Gc5~V2/2!
G

d21G2/4
, ~6!

Gu~p!5H ~kp/m!2
G

2V2 ; p&p* ,

Gc ; p*p* ,
~7!

where p*5V2m/kd. The Rabi frequency is defined as
V5dE, whered is the dipole moment of the 23S22 3P1
atomic transition andE the electric field amplitude for each
beam. The scattering rate for atoms in the statexu(p) is
proportional top2 for small momenta. Hence we can identify
the statesxu(p) for p,p* as our system states. The states
xc(p), as well as the statesxu(p) with p.p* , can be con-
sidered as comprising the bath. To complete the correspon-
dence with Eqs.~2! and ~3! we note that the excited state
decays intox1 and x21 ~and hence intoxc and xu) with
equal probability. Accordingly, the coefficienta51/2 ~see
also Ref.@12#!.

Light absorption in pair interatomic collisions requires at
least one of the colliding atoms to be in a coupled state, since
for a pair of atoms both in uncoupled states the resonance
dipole interaction is practically absent. Therefore, the colli-
sional loss term for the system atoms in Eq.~2! will be
proportional to the occupation numbernc(k) of the coupled
states with momenta aroundk. We defined our bath as con-
taining both coupled and uncoupled states, but only the
coupled part contributes to the radiative collisions. Except
for very small momenta, the time scale on which the popu-
lations change is long compared to the optical pumping time,
therefore detailed balance ensures that the ratio of the occu-
pation numbers of coupled and uncoupled states satisfies the
condition

nc~p!Gc~p!5nu~p!Gu~p!. ~8!

Hence, asGc5Gu5G̃ for p.p* , we can express the decay
of ns(p) in terms of the bath occupation numbers by substi-
tuting nc(p)5nb(p)/2.

The effect of radiative collisions can not be reduced by
relaxing the above assumptionp*,k. Let us demonstrate
this for the extreme case, wherep**pmax. We still assume
V!d. In this case it is more natural to define the system
states as uncoupled states in a small momentum range
p, p̃ near zero (p̃,k). Then, for bath states we have
Gu(q)'Gc(q/p* )

2 and, hence, most of the atoms will be
pumped into the uncoupled state@see Eq.~8!#. As only the
population of the coupled states contributes to the collisional
loss of system atoms, the rate of radiative collisions involv-
ing coupled-state atoms with momentumq is reduced by a
factor;(q/p* )

2 compared to the casep*,k. On the other
hand, the optical pumping rate is reduced by the same factor.
This is again clear from Eq.~8! which shows that the optical
pumping rate from coupled states should be exactly half the
total pumping rate from coupled and uncoupled states, just as
we found above forp*,k.

IV. RADIATIVE COLLISIONS: POSITIVE DETUNING

Let us now consider light absorption in pair collisions of
atoms in the uncoupled statexu(p) with atoms in the
coupled statexc(p8). We will first discuss the case of posi-
tive frequency detuningd, where the light is at resonance
with continuum states of the excited quasimolecule. The
Hamiltonian of resonance dipole interaction for a pair of at-
oms labeled by (1) and (2) is given by

V̂5
~ d̂~1!d̂~2!!r 223~ d̂~1!r !~ d̂~2!r !

r 5
, ~9!

whered̂(1) and d̂(2) are the dipole moment operators of the
colliding atoms, andr the vector of interparticle separation.
Under the conditiond@G54d2/3|3 radiative transitions
predominantly occur at interparticle distancesr!| where
the resonance dipole interactionV}d2/r 3 compensates the
frequency detuning. At such distances we can omit the fac-
tors exp@i(p1k)•R# and exp@i(p2k)•R# in the expressions
for xc,u(p), and the initial-state wave function of a colliding
pair takes the form

C i5 P̂gxu
~1!xc

~2! , ~10!

whereP̂g is the symmetrization operator with respect to in-
terchange of electrons and their inversion. The indexg
shows that the initial electronic state of the quasimolecule is
gerade. The two atoms forming the pair are labeled by the
superscripts~1! and ~2!.

Excited quasimolecular states to which radiative transi-
tions occur areungerade. For d.0 the quasimolecule
formed in the light absorption process corresponds to repul-
sive potential of interaction. Diagonalizing the Hamiltonian
of resonance dipole interaction Eq.~9! we find five such
states:

F̃215 P̂u

1

A2
~ x̃1

~1!f̃0
~2!1x̃0

~1!f̃1
~2!!,

F̃2215 P̂u

1

A2
~ x̃21

~1! f̃0
~2!1x̃0

~1!f̃21
~2! !,

F̃115 P̂u

1

A2
~ x̃1

~1!f̃0
~2!2x̃0

~1!f̃1
~2!!,

F̃1215 P̂u

1

A2
~ x̃21

~1! f̃0
~2!2x̃0

~1!f̃21
~2! !,

F̃5
1

A622A3
@A2F̃201~A321!F̃00#

5 P̂u

1

A622A3
@ x̃1

~1!f̃21
~2!1~A321!x̃0

~1!f̃0
~2!1x̃21

~1! f̃1
~2!#,

~11!
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where F̃JM is the electron wave function of the excited
(2 3P122 3S1) quasimolecular state, with total electron an-
gular momentumJ and projectionM , and f̃m is the wave
function of the 23P1 atom, with projectionm of the total
angular momentum. The tilde is used to denote that the quan-
tization axis is here the internuclear axis. The first four states
are characterized by the potential

V~r !5
d2

2r 3
, ~12!

and the fifth one by

V* ~r !5SA311

2 D d2r 3 . ~13!

One can transform the states of Eq.~11! on the original
quantization axis~direction of light propagation! by using
the transformation

F̃JM85(
M

~21!M82MFJMD2M8,2M
J

~u,w,0!, ~14!

whereDM8M
J (u,w,f) is a finite rotation matrix. The angles

u,w determine the orientation of the internuclear axis with
respect to the axis of quantization.

Radiative transitions couple the initial state with the states
F11,F121 ,F21,F221. The dipole moment of the corre-
sponding transitions is equal tod/A2. Accordingly, the di-
pole momentdJM of transitions from the initial state~10! to
the first four states~11! is

dJM5
d

A2
~D2M ,21

J 1D2M ,1
J !. ~15!

The dipole moment of the transition to the stateF̃ is

d*52
d

A622A3
~D0,21

2 1D01
2 !. ~16!

In our limit of large detuning the light absorption is domi-
nated by distances in a narrow vicinity of the resonance sepa-
ration r d determined by the conditionV(r )5d @or
V* (r )5d#, and the number of absorption events per unit
time and unit volume is given by~see, e.g.,@19#!:

n52pV2ncnsE d3r FU d* ~u,w!

A2d U2d„V* ~r !2d…

1(
JM

UdJM~u,w!

A2d U2d„V~r !2d…G , ~17!

wherens is the density of atoms in system states~uncoupled
states withp,p* ), nc is the density of coupled states, and
the summation should be performed over the first four states
~11!. Using Eqs.~15!, ~16!, ~12!, and ~13! we obtain from
Eq. ~17!:

n57.4S V

d D 2Gns~nc|3!. ~18!

If we replacens in Eq. ~18! by ns(p) we obtain the decay
rate of the occupation number of system atoms with momen-
tum p due to pair radiative collisions with bath atoms in
uncoupled states. As those represent only a part of the bath,
the above defined effective rate constant of radiative colli-
sions G ~and parameterb) are proportional to the ratio
nc /nb . As we already mentioned forp*,k this ratio is
equal to 1/2. Then, comparing Eqs.~18!, ~6!, and ~7! with
Eq. ~3! we findb57.4 and~with a51/2) obtain

h50.068~Lb
3/|3!54.0k3/pmax

3 '3~Er /Tb!
3/2. ~19!

Unlesspmax is within a factor 1.5 ofk, the parameterh is
less than unity. In other words the atom laser can only be
realized in the case of positived if the bath is essentially
cooled down to the recoil energy. As noted above Eq.~19!
remains unchanged forp*.k since in this case the ratio
nc /nb becomes smaller than 1/2, but the filling rate reduces
by the same factor.

The above results are easily generalized to 3D and per-
haps surprisingly the result does not change. The key point is
that the final states of the colliding pair given in Eq.~11!
remain unchanged and we need only to reconsider the initial
state. In a 3D VSCPT cooling scheme different configura-
tions of laser fields are possible. It has been shown@21# ~see
also Ref.@13#! that for aJ51 toJ51 transition there always
exists an uncoupled state withp50. This uncoupled state is
a vectorc(R) which satisfies the condition that the local
spin vector is everywhere proportional and parallel to the
polarization vector of the applied light field:

c~R!5cE~R!, ~20!

wherec is a normalization coefficient, andE(R) is the laser
electric field at positionR. Commonly the geometry of the
light fields is selected such that it consists of three, mutually
orthogonal, pairs of light fields each consisting of counter-
propagatings1 ands2 beams, just as in the 1D case. The
resulting fieldE(R) is rather complicated, giving rise to a
light field potential and a pumping rate which are modulated
in real space. As in the 1D case, one can generalize Eq.~20!
and obtain the expression for the ‘‘uncoupled state’’ withp
Þ0. Then the loss rate from such ‘‘uncoupled’’ states is
again proportional top2 @21,13#. When considering radiative
collisions we can again omit all momentum labels, since for
udu@G the dominant contribution to the rate of light absorp-
tion comes from interatomic distancesr!l, while the opti-
cal potential~and the functionc) vary on a length scale of
orderl. At each pointR we can define a local quantization
axis perpendicular to the vectorc(R) and find two orthogo-
nal coupled statesxc1 andxc2 which form the complement
of c(R). The uncoupled state plays the role of the state
xu , introduced above for the 1D case@see Eq.~5!#, and the
two coupled states correspond to superpositions ofxc and
x0.

One difference from the true 1D case is that due to the
nonlocal nature of the pumping process neither of the states
xc1 and xc2 is depopulated. However, asxc1 and xc2 are
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related by a simple unitary transformation, one immediately
finds that the probability that the atom is optically pumped
into the statec(R) from either of the coupled states is ex-
actly 1/2, just as in the 1D case described above. Similarly,
the result of the calculation presented above for the rate of
radiative collisions carries over without change: We should
only replacenc in Eq. ~18! by the total density of atoms in
the statesxc1 andxc2.

The results of this section rely on perturbation theory and
do not take into account the influence of light on the wave
function of the relative motion of atoms in the initial state. In
fact this wave function was implicitly put equal to unity at
r close to the resonance separationr d , which assumes that
the ratioV/d is sufficiently small. The situation is different
if (V/d)krd@1, wherek5Amd is the momentum of the
relative motion acquired by a colliding pair in the light ab-
sorption process. Then the light will provide a repulsion be-
tween the potential curveV(r ) @or V* (r )# and the potential
curve of the ground electronic state~shifted by the photon
energy!. This decreases the probability for two atoms to ap-
proach each other to distancesr;r d where the light absorp-
tion is most efficient. Hence, in principle, there is a possibil-
ity to reduce the rate of radiative collisions by increasing
V/d. In the case of He* for realistic frequency detuning this
requires the Rabi frequency to be significantly larger than
d, as the quantitykrd will not be much greater than unity.

V. NEGATIVE DETUNING

For negative values ofd the situation is completely dif-
ferent from the case described above, as the light can only be
at resonance with discrete vibrational levels~having orbital
angular momentum equal to 1 and high vibrational quantum
number! of the electronically excited molecule. This means
that radiative collisions will be nothing else than photoasso-
ciation, a process well investigated in ultra-cold alkali atom
gases~for a review see@22,23#!. In analogy to Eq.~11!,
diagonalizing the Hamiltonian of resonance dipole interac-
tion Eq. ~9! we find four attractive excited electronic states:

F̃225 P̂ux̃1
~1!f̃1

~2! ,

F̃2225 P̂ux̃21
~1! f̃21

~2! ,

F̃105 P̂u

1

A2
~ x̃1

~1!f̃21
~2!2x̃21

~1! f̃1
~2!!,

F̃25
1

A612A3
@~A311!F̃002A2F̃20#

5 P̂u

1

A612A3
@ x̃1

~1!f̃21
~2!2~A311!x̃0

~1!f̃0
~2!1x̃21

~1! f̃1
~2!#.

~21!

The first three states are characterized by the interaction po-
tential V2(r )52d2/r 3 and the fourth one by
V*2(r )5(12A3)d2/2r 3. The transition dipole moments

dJM to the first three states of Eq.~21! are again given by Eq.
~15! and the dipole moment of the transition to the state
F̃2 is

d*25
d

A612A3
~D0,21

2 1D01
2 !. ~22!

The exact location of discrete vibrational levels in these po-
tentials can only be found if one knows the short-range form
of the interaction potentials. Nevertheless, the spacingD«n

between adjacent levels with binding energies«n and«n11 is
determined by the above given resonance dipole potentials
V2 and V*2 : D«n;«n(r t /r 0)

1/2;(«n /G)
5/6(|/r 0)

1/2,
wherer t is the outer turning point for the relative motion of
atoms in the bound state with vibrational quantum number
n, and r 05md2@r t . Hence, we can find the photoassocia-
tion rate as a function of the frequency detuning from the
nearest vibrational resonance. If the light is nearly resonant
with the vibrational leveln, the rate of photoassociation will
be

npa54paJV
2

G

~d2«n!21G2 U E
0

`

cn~r !cg~r !r 2drU2ncns .
~23!

Herecn(r ) andcg(r ) are the radial wave functions of the
relative motion of atoms in the initial and final electronic
states of the quasimolecule. The coefficientaJ51/(2J11)
for the statesF̃JM given in Eq.~21! andaJ50.042 for the
stateF̃2 . The main contribution to the integral in Eq.~24!
comes from the vicinity of the tuning pointr t . Unlessd and
«n are very large, the wave functioncg can be put equal to
unity at distancesr;r t . Calculating the integral by using a
linear approximation for the potentialsV2(r ) andV*2(r ) in
the vicinity of r t we find

npa5pbJS V

d D 2 G2

~d2«n!21G2D«n|3ncns . ~24!

For transitions to the stateF̃JM we havebJ5aJ , and for
transitions to the stateF̃2 the coefficientbJ50.015.

At resonance the rate of photoassociation Eq.~24! is
larger by a factor;D«n /G than the rate of radiative colli-
sions given by Eq.~18! for similar but positive detuning.
However, for large detuning the level spacing becomes very
much larger thanG and for most values ofd one will miss
the vibrational resonances. The photoassociation rate is the
smallest when the frequency detuning is just in between two
resonances, i.e., is of orderD«n . In this case the two nearest
resonances will give the dominant contribution and, assum-
ing d2«n;D«n , we have

npa;~V/d!2~G2/D«n!ncns|
3, ~25!

which is smaller by factor of orderG/D«n than the rate of
radiative collisions for similar but positive detuning. Accord-
ingly, we haveh;(Lb /|)

3(D«n /G). Hence, for the nega-
tive d caseh can in principle be increased to a value above
unity for higher bath ‘‘temperatures’’ than in the case of
positived.
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In practice, however, negative detuning does not lead to
sub-Doppler cooling in a VSCPT scheme on aJ51 to
J51 transition. Therefore if we only rely on Doppler cool-
ing to cool the bath, the increase inh resulting from the
reduced rate of radiative collisions is counteracted by the
decrease ofLb . It is not clear whether this problem can be
easily dealt with.

VI. CONCLUSIONS

We have shown that the operating conditions for an atom
laser based on VSCPT of He* are strongly limited by the
loss mechanism associated with radiative collisions. For
positive detuning it is necessary to precool the gas very close
to the recoil energy. For negative detuning the situation is
more favorable but the lack of sub-Doppler cooling in
VSCPT schemes for negatived may offset this advantage.
We have shown that it is not fundamentally impossible to

realize the operating conditions for an atom laser using
VSCPT but in practice it may be rather difficult. Clearly all
other loss mechanisms should be carefully eliminated.

Although we did not analyze in detail other atom laser
schemes, we believe that in general it is crucial to take the
effect of radiative collisions into account when considering
these models.
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