30 research outputs found

    Modulation of colony stimulating factor release and apoptosis in human colon cancer cells by anticancer drugs

    Get PDF
    Modulation of the immune response against tumour cells is emerging as a valuable approach for cancer treatment. Some experimental studies have shown that secretion of colony stimulating factors by cancer cells reduces their tumorigenicity and increases their immunogenicity probably by promoting the cytolitic and antigen presenting activities of leukocytes. We have observed that human colon cancer cells (HT-29) are able to secrete granulocyte-macrophage-colony stimulating factor, granulocyte-colony stimulating factor and macrophage-colony stimulating factor when stimulated with cytokines (IL-1β and TNF-α). In this study we assessed, for the first time, the effects of several anticancer drugs on colony stimulating factor release or apoptosis in HT-29 cells. Cytokine-induced release of granulocyte-macrophage-colony stimulating factor, granulocyte-colony stimulating factor and macrophage-colony stimulating factor was significantly increased by cisplatin and 6-mercaptopurine. Taxol only increased macrophage-colony stimulating factor release while reduced that of granulocyte-colony stimulating factor. No changes in colony stimulating factor secretion were observed after treatment with methotrexate. Only cisplatin and taxol induced apoptosis in these cells. Secretion of colony stimulating factors by colon cancer cells may contribute to the immune host response against them. Anticancer drugs such as cisplatin and 6-mercaptopurine increase colony stimulating factor secretion by cytokine stimulated cancer cells probably through mechanisms different to those leading to cell apoptosis, an effect that may contribute to their anti-neoplasic action

    Effect of B7.1 Costimulation on T-Cell Based Immunity against TAP-Negative Cancer Can Be Facilitated by TAP1 Expression

    Get PDF
    Tumors deficient in expression of the transporter associated with antigen processing (TAP) usually fail to induce T-cell-mediated immunity and are resistant to T-cell lysis. However, we have found that introduction of the B7.1 gene into TAP-negative (TAP−) or TAP1-transfected (TAP1+) murine lung carcinoma CMT.64 cells can augment the capacity of the cells to induce a protective immune response against wild-type tumor cells. Differences in the strength of the protective immune responses were observed between TAP− and TAP1+ B7.1 expressing CMT.64 cells depending on the doses of γ-irradiated cell immunization. While mice immunized with either high or low dose of B7.1-expressing TAP1+ cells rejected TAP− tumors, only high dose immunization with B7.1-expressing TAP− cells resulted in tumor rejection. The induced protective immunity was T-cell dependent as demonstrated by dramatically reduced antitumor immunity in mice depleted of CD8 or CD4 cells. Augmentation of T-cell mediated immune response against TAP− tumor cells was also observed in a virally infected tumor cell system. When mice were immunized with a high dose of γ-irradiated CMT.64 cells infected with vaccinia viruses carrying B7.1 and/or TAP1 genes, we found that the cells co-expressing B7.1 and TAP1, but not those expressing B7.1 alone, induced protective immunity against CMT.64 cells. In addition, inoculation with live tumor cells transfected with several different gene(s) revealed that only B7.1- and TAP1-coexpressing tumor cells significantly decreased tumorigenicity. These results indicate that B7.1-provoked antitumor immunity against TAP− cancer is facilitated by TAP1-expression, and thus both genes should be considered for cancer therapy in the future

    Detection of HLA class II-dependent T helper antigen using antigen phage display

    No full text
    Major histocompatibility complex (MHC) class II-dependent antigens not only activate CD4(+) T helper (Th) cells, but also cytolytic T lymphocytes and effector cells of the innate immune system. These antigens therefore are candidate vaccines against cancer and infectious agents. We have developed a novel approach using a model antigen, tetanus toxoid (TT), which provides the basis for the establishment of a novel strategy of cloning Th antigens. In the TT model system, a cDNA library encoding part of the TT light chain which contained a TT-associated Th epitope recognized by TT-specific Th clones was displayed on a phage vector (TT-phage) and presented to TT-specific Th cells by autologous Epstein-Barr virus-transformed B cells (APC). These TT-phages were able to specifically activate two different TT-specific CD4(+) Th cell lines as demonstrated both in [(3)H]thymidine incorporation and cytokine release assays. Th cell stimulation by TT-phages was significant at a ratio of one TT-phage in 50 irrelevant phages. The described approach provides the basis for the development of a novel strategy of cloning MHC class II-dependent Th antigens, using available Th cells. This strategy has several potential advantages over existing antigen cloning methods or biochemical peptide isolation

    Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic collapse of antitumour immunity

    No full text
    We investigated the relationship between transforming growth factor-β (TGF-β)-secreting T-regulatory (Tr) cells and anti-B16 melanoma immunity, and studied the association of early cytokines expressed at tumour sites with the generation of Tr cells. A large number of CD4(+) Tr cells producing interleukin (IL)-4, IL-10 and TGF-β accumulated with functionally depressed CD8(+) cytotoxic T lymphocytes (CTLs) at tumour sites on day 20 after subcutaneous (s.c.) inoculation of B16 tumour cells. Tr cells consisted of two populations, which were termed T helper 3 (Th3) and Tr1 cells. B16-infiltrating Tr cells strongly inhibited the generation of B16-specific T helper 1 (Th1) cells in a TGF-β-dependent manner and were assumed to suppress effective generation of CTLs. In addition, B16 cells markedly progressed in mice transferred adoptively by the cultured B16-infiltrating Tr cells compared with untreated mice. The capacity of these Tr cells to produce TGF-β was hampered by neutralizing anti-IL-10 and partly anti-IL-4 monoclonal antibodies (mAbs) injected intralesionally during the early development of B16 tumours, and this treatment markedly attenuated B16 growth. Furthermore, a lesional injection of recombinant mouse IL-10 at an early tumour site resulted in the vigorous progression of B16 tumours. These results provide evidence that Tr cells, belonging to the T helper 3/T-regulatory 1 (Th3/Tr1) type, are activated in B16-bearing hosts under the influence of T helper 2 (Th2) cytokines, mainly IL-10 (produced at early tumour lesions), and that this regulatory T-cell population functions as a suppressor of anti-B16 immunity
    corecore