21 research outputs found

    Keratin and S100 calcium-binding proteins are major constituents of the bovine teat canal lining

    Get PDF
    The bovine teat canal provides the first-line of defence against pathogenic bacteria infecting the mammary gland, yet the protein composition and host-defence functionality of the teat canal lining (TCL) are not well characterised. In this study, TCL collected from six healthy lactating dairy cows was subjected to two-dimensional electrophoresis (2-DE) and mass spectrometry. The abundance and location of selected identified proteins were determined by western blotting and fluorescence immunohistochemistry. The variability of abundance among individual cows was also investigated. Two dominant clusters of proteins were detected in the TCL, comprising members of the keratin and S100 families of proteins. The S100 proteins were localised to the teat canal keratinocytes and were particularly predominant in the cornified outermost layer of the teat canal epithelium. Significant between-animal variation in the abundance of the S100 proteins in the TCL was demonstrated. Four of the six identified S100 proteins have been reported to have antimicrobial activity, suggesting that the TCL has additional functionality beyond being a physical barrier to invading microorganisms. These findings provide new insights into understanding host-defence of the teat canal and resistance of cows to mastitis

    FBXO32 links ubiquitination to epigenetic reprograming of melanoma cells

    No full text
    International audienceUbiquitination by serving as a major degradation signal of proteins, but also by controlling protein functioning and localization, plays critical roles in most key cellular processes. Here, we show that MITF, the master transcription factor in melanocytes, controls ubiquitination in melanoma cells. We identified FBXO32, a component of the SCF E3 ligase complex as a new MITF target gene. FBXO32 favors melanoma cell migration, proliferation, and tumor development in vivo. Transcriptomic analysis shows that FBXO32 knockdown induces a global change in melanoma gene expression profile. These include the inhibition of CDK6 in agreement with an inhibition of cell proliferation and invasion upon FBXO32 silencing. Furthermore, proteomic analysis identifies SMARC4, a component of the chromatin remodeling complexes BAF/PBAF, as a FBXO32 partner. FBXO32 and SMARCA4 co-localize at loci regulated by FBXO32, such as CDK6 suggesting that FBXO32 controls transcription through the regulation of chromatin remodeling complex activity. FBXO32 and SMARCA4 are the components of a molecular cascade, linking MITF to epigenetics, in melanoma cells
    corecore