47 research outputs found
Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2), a beta integrin antagonist, in patients with solid tumours
To evaluate the toxicity, pharmacological and biological properties of ATN-161, a five –amino-acid peptide derived from the synergy region of fibronectin, adult patients with advanced solid tumours were enrolled in eight sequential dose cohorts (0.1–16 mg kg−1), receiving ATN-161 administered as a 10-min infusion thrice weekly. Pharmacokinetic sampling of blood and urine over 7 h was performed on Day 1. Twenty-six patients received from 1 to 14 4-week cycles of treatment. The total number of cycles administered to all patients was 86, without dose-limiting toxicities. At dose levels above 0.5 mg kg−1, mean total clearance and volume of distribution showed dose-independent pharmacokinetics (PKs). At 8.0 and 16.0 mg kg−1, clearance of ATN-161 was reduced, suggesting saturable PKs. Dose escalation was halted at 16 mg kg−1 when drug exposure (area under the curve) exceeded that associated with efficacy in animal models. There were no objective responses. Six patients received more than four cycles of treatment (>112 days). Three patients received 10 or more cycles (⩾280 days). ATN-161 was well tolerated at all dose levels. Approximately, 1/3 of the patients in the study manifested prolonged stable disease. These findings suggest that ATN-161 should be investigated further as an antiangiogenic and antimetastatic cancer agent alone or with chemotherapy
Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins
The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs
Photorealistic rendering: a survey on evaluation
This article is a systematic collection of existing methods and techniques for evaluating rendering category in the field of computer graphics. The motive for doing this study was the difficulty of selecting appropriate methods for evaluating and validating specific results reported by many researchers. This difficulty lies in the availability of numerous methods and lack of robust discussion of them. To approach such problems, the features of well-known methods are critically reviewed to provide researchers with backgrounds on evaluating different styles in photo-realistic rendering part of computer graphics. There are many ways to evaluating a research. For this article, classification and systemization method is use. After reviewing the features of different methods, their future is also discussed. Finally, dome pointers are proposed as to the likely future issues in evaluating the research on realistic rendering. It is expected that this analysis helps researchers to overcome the difficulties of evaluation not only in research, but also in application
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference