27 research outputs found

    Primary spinal cord tumors of childhood: effects of clinical presentation, radiographic features, and pathology on survival

    Get PDF
    To determine the relationship between clinical presentation, radiographic features, pathology, and treatment on overall survival of newly diagnosed pediatric primary spinal cord tumors (PSCT). Retrospective analysis of all previously healthy children with newly diagnosed PSCT at a single institution from 1995 to present was performed. Twenty-five pediatric patients (15 boys, average 7.9 years) were diagnosed with PSCT. Presenting symptoms ranged from 0.25 to 60 months (average 7.8 months). Symptom duration was significantly shorter for high grade tumors (average 1.65 months) than low grade tumors (average 11.2 months) (P = 0.05). MRI revealed tumor (8 cervical, 17 thoracic, 7 lumbar, 7 sacral) volumes of 98–94,080 mm3 (average 19,474 mm3). Homogeneous gadolinium enhancement on MRI correlated with lower grade pathology (P = 0.003). There was no correlation between tumor grade and volume (P = 0.63) or edema (P = 0.36) by MRI analysis. Median survival was 53 months and was dependent on tumor grade (P = 0.05) and gross total resection (P = 0.01) but not on gender (P = 0.49), age of presentation (P = 0.82), duration of presenting symptoms (P = 0.33), or adjuvant therapies (P = 0.17). Stratified Kaplan–Meier analysis confirmed the association between degree of resection and survival after controlling for tumor grade (P = 0.01). MRI homogeneous gadolinium enhancement patterns may be helpful in distinguishing low grade from high grade spinal cord malignancies. While tumor grade and gross total resection rather than duration of symptoms correlated with survival in our series, greater than one-third of patients had reported symptoms greater than 6 months duration prior to diagnosis

    Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT(4 )agonist – tegaserod

    Get PDF
    BACKGROUND: Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine. Drugs targeting the serotonin receptor are used as prokinetic agents to manage intestinal motor disorders, in particular irritable bowel syndrome. Thus, tegaserod, acting on 5-HT(4 )receptor, ideally should obviate detrimental effects of excessive cholesterol on gastrointestinal smooth muscle. In this study we examined the effect of tegaserod on cholesterol-induced changes in the contractile responses of intestinal smooth muscle. METHODS: The effects of a high cholesterol (1%) diet on the in vitro contractile responses of jejunal longitudinal smooth muscle from Richardson ground squirrels to the cholinergic agonist carbachol were examined in the presence or absence of tetrodrodotoxin (TTX). Two groups of animals, fed either low (0.03%) or high cholesterol rat chow diet, were further divided into two subgroups and treated for 28 days with either vehicle or tegaserod. RESULTS: The high cholesterol diet increased, by nearly 2-fold, contractions of the jejunal longitudinal smooth muscle elicited by carbachol. These cholinergic contractions were mediated by muscarinic receptors since they were blocked by scopolamine, a muscarinic receptor antagonist, but not by the nicotinic receptor antagonist, hexamethonium. Tegaserod treatment, which did not affect cholinergic contractions of tissues from low cholesterol fed animals, abrogated the increase caused by the high cholesterol diet. With low cholesterol diet TTX enhanced carbachol-evoked contractions, whereas this action potential blocker did not affect the augmented cholinergic contractions seen with tissues from animals on the high cholesterol diet. Tegaserod-treatment removed the effects of a high cholesterol diet on neuronal muscarinic receptors, as the potentiating effect of TTX on carbachol-elicited contractions was maintained in these animals. CONCLUSION: A high cholesterol diet causes significant changes to cholinergic neurotransmission in the enteric nerves of the jejunum. The mechanisms by which these effects of cholesterol are reversed by tegaserod are unknown, but relate to removal of an inhibitory effect of cholesterol on enteric nerves

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome
    corecore