18 research outputs found

    Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents

    Get PDF
    Fe oxide deposits are commonly found at hydrothermal vent sites at mid-ocean ridge and back-arc sea floor spreading centers, seamounts associated with these spreading centers, and intra-plate seamounts, and can cover extensive areas of the seafloor. These deposits can be attributed to several abiogenic processes and commonly contain micron-scale filamentous textures. Some filaments are cylindrical casts of Fe oxyhydroxides formed around bacterial cells and are thus unquestionably biogenic. The filaments have distinctive morphologies very like structures formed by neutrophilic Fe oxidizing bacteria. It is becoming increasingly apparent that Fe oxidizing bacteria have a significant role in the formation of Fe oxide deposits at marine hydrothermal vents. The presence of Fe oxide filaments in Fe oxides is thus of great potential as a biomarker for Fe oxidizing bacteria in modern and ancient marine hydrothermal vent deposits. The ancient analogues of modern deep-sea hydrothermal Fe oxide deposits are jaspers. A number of jaspers, ranging in age from the early Ordovician to late Eocene, contain abundant Fe oxide filamentous textures with a wide variety of morphologies. Some of these filaments are like structures formed by modern Fe oxidizing bacteria. Together with new data from the modern TAG site, we show that there is direct evidence for bacteriogenic Fe oxide precipitation at marine hydrothermal vent sites for at least the last 490 Ma of the Phanerozoic

    The family Gallionellaceae

    No full text
    \ua9 2014 Springer-Verlag Berlin Heidelberg. All rights reserved. The family Gallionellaceae comprises the genus Gallionella with one established type species, Gallionella ferruginea. The phylogenetic position of Gallionellaceae, as determined by 16S-rDNA sequence comparisons, is among the β-proteobacteria. Its phylogenetic neighbors are Methylophilaceae, Nitrosomonadaceae, and Spirillaceae. The family contains gram-negative, chemolithoautotrophic, neutrophilic, and aerobic ferrous iron-oxidizing bacteria with the ability to secrete an extracellular twisted stalk composed of numerous fibers. Gallionellaceae can be found where anaerobic groundwater containing ferrous iron reaches an environment that contains oxygen. Large amounts of stalk material are usually produced; this material attracts iron hydroxides and many trace metals, giving it a brown, macroscopic appearance. The stalk and iron hydroxide masses formed may eventually cause severe clogging of ditches, drinking-water wells, and any other facilities utilizing iron-bearing, anaerobic groundwater. The family is relevant to biotechnological processes, as it can be used to remove ferrous iron when producing drinking water from groundwater

    Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

    No full text
    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 μm h(−1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (∼100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature
    corecore