70 research outputs found

    Functional Characterization of the Dendritically Localized mRNA Neuronatin in Hippocampal Neurons

    Get PDF
    Local translation of dendritic mRNAs plays an important role in neuronal development and synaptic plasticity. Although several hundred putative dendritic transcripts have been identified in the hippocampus, relatively few have been verified by in situ hybridization and thus remain uncharacterized. One such transcript encodes the protein neuronatin. Neuronatin has been shown to regulate calcium levels in non-neuronal cells such as pancreatic or embryonic stem cells, but its function in mature neurons remains unclear. Here we report that neuronatin is translated in hippocampal dendrites in response to blockade of action potentials and NMDA-receptor dependent synaptic transmission by TTX and APV. Our study also reveals that neuronatin can adjust dendritic calcium levels by regulating intracellular calcium storage. We propose that neuronatin may impact synaptic plasticity by modulating dendritic calcium levels during homeostatic plasticity, thereby potentially regulating neuronal excitability, receptor trafficking, and calcium dependent signaling

    Midbrain dopaminergic development in vivo and in vitro from embryonic stem cells

    No full text
    The midbrain dopaminergic (mDA) neurons play a key role in the function of a variety of brain systems, including motor control and reward pathways. This has led to much interest in these neurons as targets for intervention in human disorders such as Parkinson's disease and schizophrenia. A major area of interest is to direct embryonic stem (ES) cells to differentiate into mDA neurons in vitro, which can then be used for cell therapy or drug screening. At present, our understanding of mDA development in vivo is limited. However, recent studies have identified a number of regulatory factors that influence the development of mDA neurons in vivo. Such studies will not only increase our understanding of mDA development in vivo, they may also promote new paradigms for regulating mDA production from ES cells in vitro. Here we review the current knowledge on mDA development in vivo and mDA differentiation

    The use of numerical flow and transport models in environmental analyses

    No full text
    This chapter provides an overview of alternative approaches for modeling water flow and contaminant transport problems in soils and groundwater. Special focus is on flow and transport processes in the variably saturated vadose zone between the soil surface and the groundwater table. The governing flow and transport equations are discussed for both equilibrium and nonequilibrium flow conditions, followed by three examples. The first example shows how one-dimensional root-zone modeling can be used to estimate short- and long-term recharge rates, including contaminant transport through the vadose zone. A second example illustrates a two-dimensional application involving drip irrigation, while the third example deals with two-dimensional nonequilibrium transport of a pesticide in a tile-drained field soil. Also discussed are alternative pore-scale modeling approaches that may provide a better understanding of the basic physical and geochemical processes affecting fluid flow and contaminant transport in saturated and variably saturated media
    • …
    corecore