118 research outputs found

    A cognitive forcing tool to mitigate cognitive bias:A randomised control trial

    Get PDF
    Abstract Background Cognitive bias is an important source of diagnostic error yet is a challenging area to understand and teach. Our aim was to determine whether a cognitive forcing tool can reduce the rates of error in clinical decision making. A secondary objective was to understand the process by which this effect might occur. Methods We hypothesised that using a cognitive forcing tool would reduce diagnostic error rates. To test this hypothesis, a novel online case-based approach was used to conduct a single blinded randomized clinical trial conducted from January 2017 to September 2018. In addition, a qualitative series of “think aloud” interviews were conducted with 20 doctors from a UK teaching hospital in 2018. The primary outcome was the diagnostic error rate when solving bias inducing clinical vignettes. A volunteer sample of medical professionals from across the UK, Republic of Ireland and North America. They ranged in seniority from medical student to Attending Physician. Results Seventy six participants were included in the study. The data showed doctors of all grades routinely made errors related to cognitive bias. There was no difference in error rates between groups (mean 2.8 cases correct in intervention vs 3.1 in control group, 95% CI -0.94 – 0.45 P = 0.49). The qualitative protocol revealed that the cognitive forcing strategy was well received and a produced a subjectively positive impact on doctors’ accuracy and thoughtfulness in clinical cases. Conclusions The quantitative data failed to show an improvement in accuracy despite a positive qualitative experience. There is insufficient evidence to recommend this tool in clinical practice, however the qualitative data suggests such an approach has some merit and face validity to users

    About rats and jackfruit trees: modeling the carrying capacity of a Brazilian Atlantic Forest spiny-rat Trinomys dimidiatus (Günther, 1877) – Rodentia, Echimyidae – population with varying jackfruit tree (Artocarpus heterophyllus L.) abundances

    No full text
    We carried out a six-year study aimed at evaluating if and how a Brazilian Atlantic Forest small mammal community responded to the presence of the invasive exotic species Artocarpus heterophyllus, the jackfruit tree. In the surroundings of Vila Dois Rios, Ilha Grande, RJ, 18 grids were established, 10 where the jackfruit tree was present and eight were it was absent. Previous results indicated that the composition and abundance of this small mammal community were altered by the presence and density of A. heterophyllus. One observed effect was the increased population size of the spiny-rat Trinomys dimidiatus within the grids where the jackfruit trees were present. Therefore we decided to create a mathematical model for this species, based on the Verhulst-Pearl logistic equation. Our objectives were i) to calculate the carrying capacity K based on real data of the involved species and the environment; ii) propose and evaluate a mathematical model to estimate the population size of T. dimidiatus based on the monthly seed production of jackfruit tree, Artocarpus heterophyllus and iii) determinate the minimum jackfruit tree seed production to maintain at least two T. dimidiatus individuals in one study grid. Our results indicated that the predicted values by the model for the carrying capacity K were significantly correlated with real data. The best fit was found considering 20~35% energy transfer efficiency between trophic levels. Within the scope of assumed premises, our model showed itself to be an adequate simulator for Trinomys dimidiatus populations where the invasive jackfruit tree is present

    About rats and jackfruit trees: modeling the carrying capacity of a Brazilian Atlantic Forest spiny-rat Trinomys dimidiatus (Günther, 1877) – Rodentia, Echimyidae – population with varying jackfruit tree (Artocarpus heterophyllus L.) abundances

    No full text
    We carried out a six-year study aimed at evaluating if and how a Brazilian Atlantic Forest small mammal community responded to the presence of the invasive exotic species Artocarpus heterophyllus, the jackfruit tree. In the surroundings of Vila Dois Rios, Ilha Grande, RJ, 18 grids were established, 10 where the jackfruit tree was present and eight were it was absent. Previous results indicated that the composition and abundance of this small mammal community were altered by the presence and density of A. heterophyllus. One observed effect was the increased population size of the spiny-rat Trinomys dimidiatus within the grids where the jackfruit trees were present. Therefore we decided to create a mathematical model for this species, based on the Verhulst-Pearl logistic equation. Our objectives were i) to calculate the carrying capacity K based on real data of the involved species and the environment; ii) propose and evaluate a mathematical model to estimate the population size of T. dimidiatus based on the monthly seed production of jackfruit tree, Artocarpus heterophyllus and iii) determinate the minimum jackfruit tree seed production to maintain at least two T. dimidiatus individuals in one study grid. Our results indicated that the predicted values by the model for the carrying capacity K were significantly correlated with real data. The best fit was found considering 20~35% energy transfer efficiency between trophic levels. Within the scope of assumed premises, our model showed itself to be an adequate simulator for Trinomys dimidiatus populations where the invasive jackfruit tree is present
    corecore