22 research outputs found

    Bone mineral density by digital X-ray radiogrammetry is strongly decreased and associated with joint destruction in long-standing Rheumatoid Arthritis: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims were to explore bone mineral density (BMD) by digital X-ray radiogrammetry (DXR) in postmenopausal women with long-lasting rheumatoid arthritis (RA) in relation to dual x-ray absorptiometry (DXA)-BMD, joint destruction by conventional radiographs and disease related variables in a cross-sectional study.</p> <p>Methods</p> <p>Seventy-five postmenopausal women with RA were examined by DXA measuring DXA-BMD of the forearm, total hip and lumbar spine, by scoring joint destruction on plain radiographs by the method of Larsen and by DXR-BMD in metacarpals two to four. The DXR-BMD results of the RA women were compared with an age and sex-matched reference database. A function of DXR-BMD in relation to age and disease duration was created. Associations were investigated by bivariate and multiple linear regression analyses.</p> <p>Results</p> <p>DXR-BMD was strongly decreased in RA patients compared to the reference database (p < 0.001). Calculations showed that DXR-BMD was not markedly influenced the first years after diagnosis of RA, but between approximately 5-10 years of disease there was a steep decline in DXR-BMD which subsequently levelled off. In multiple regression analyses disease duration, CRP and DXR-BMD were independent variables associated with Larsen score (R<sup>2</sup>= 0.64). Larsen score and BMD forearm were independent determinants of DXR-BMD (R<sup>2 </sup>= 0.79).</p> <p>Conclusions</p> <p>DXR-BMD was strongly reduced and associated with both Larsen score and DXA-BMD forearm in these postmenopausal women with RA implying that DXR-BMD is a technique that reflects both the erosive process and bone loss adjacent to affected joints.</p

    Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations

    Get PDF

    Cellulose-Based Matrix Microspheres of Prednisolone Inclusion Complex: Preparation and Characterization

    No full text
    The purpose of the present investigation was to encapsulate pure prednisolone (PRD) and PRD–hydroxypropyl-β-cyclodextrin (HPβCD) complex in cellulose-based matrix microspheres. The system simultaneously exploits complexation technique to enhance the solubility of low-solubility drug (pure PRD) and subsequent modulation of drug release from microspheres (MIC) at a predetermined time. The microspheres of various compositions were prepared by an oil-in-oil emulsion–solvent evaporation method. The effect of complexation and presence of cellulose polymers on entrapment efficiency, particle size, and drug release had been investigated. The solid-state characterization was performed by Fourier transform infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and powder X-ray diffractometry. The morphology of MIC was examined by scanning electron microscopy. The in vitro drug release profiles from these microspheres showed the desired biphasic release behavior. After enhancing the solubility of prednisolone by inclusion into HPβCD, the drug release was easily modified in the microsphere formulation. It was also demonstrated that the CDs in these microspheres were able to modulate several properties such as morphology, drug loading, and release properties. The release kinetics of prednisolone from microspheres followed quasi-Fickian and first-order release mechanisms. In addition to this, the f2-metric technique was used to check the equivalency of dissolution profiles of the optimized formulation before and after stability studies, and it was found to be similar. A good outcome, matrix microspheres (coded as MIC5) containing PRD–HPβCD complex, showed sustained release of drug (95.81%) over a period of 24 h
    corecore