280 research outputs found

    Turbulence in the Star-forming Interstellar Medium: Steps toward Constraining Theories with Observations

    Full text link
    Increasingly sophisticated observational tools and techniques are now being developed for probing the nature of interstellar turbulence. At the same time, theoretical advances in understanding the nature of turbulence and its effects on the structure of the ISM and on star formation are occurring at a rapid pace, aided in part by numerical simulations. These increased capabilities on both fronts open new opportunities for strengthening the links between observation and theory,and for meaningful comparisons between the two.Comment: 9 pages, 2 figures, Summary of Interstellar Turbulence Sessions at the Workshop on Magnetic Fields and Star Formation: Theory versus Observation

    Re-examining Larson's Scaling Relationships in Galactic Molecular Clouds

    Full text link
    The properties of Galactic molecular clouds tabulated by Solomon etal (1987) (SRBY) are re-examined using the Boston University-FCRAO Galactic Ring Survey of 13CO J=1-0 emission. These new data provide a lower opacity tracer of molecular clouds and improved angular and spectral resolution than previous surveys of molecular line emission along the Galactic Plane. We calculate GMC masses within the SRBY cloud boundaries assuming LTE conditions throughout the cloud and a constant H2 to 13CO abundance, while accounting for the variation of the 12C/13C with Galacto-centric radius. The LTE derived masses are typically five times smaller than the SRBY virial masses. The corresponding median mass surface density of molecular hydrogen for this sample is 42 Msun/pc^2, which is significantly lower than the value derived by SRBY (median 206 Msun/pc^2) that has been widely adopted by most models of cloud evolution and star formation. This discrepancy arises from both the extrapolation by SRBY of velocity dispersion, size, and CO luminosity to the 1K antenna temperature isophote that likely overestimates the GMC masses and our assumption of constant 13CO abundance over the projected area of each cloud. Owing to the uncertainty of molecular abundances in the envelopes of clouds, the mass surface density of giant molecular clouds could be larger than the values derived from our 13CO measurements. From velocity dispersions derived from the 13CO data, we find that the coefficient of the cloud structure functions, vo=sigma_v/R^{1/2}, is not constant, as required to satisfy Larson's scaling relationships, but rather systematically varies with the surface density of the cloud as Sigma^{0.5} as expected for clouds in self-gravitational equlibrium.Comment: Accepted by ApJ. Newest version includes modifications from the refere

    The Turbulence Spectrum of Molecular Clouds in the Galactic Ring Survey: A Density-Dependent PCA Calibration

    Get PDF
    Turbulence plays a major role in the formation and evolution of molecular clouds. The problem is that turbulent velocities are convolved with the density of an observed region. To correct for this convolution, we investigate the relation between the turbulence spectrum of model clouds, and the statistics of their synthetic observations obtained from Principal Component Analysis (PCA). We apply PCA to spectral maps generated from simulated density and velocity fields, obtained from hydrodynamic simulations of supersonic turbulence, and from fractional Brownian motion fields with varying velocity, density spectra, and density dispersion. We examine the dependence of the slope of the PCA structure function, alpha_PCA, on intermittency, on the turbulence velocity (beta_v) and density (beta_n) spectral indexes, and on density dispersion. We find that PCA is insensitive to beta_n and to the log-density dispersion sigma_s, provided sigma_s 2, alpha_PCA increases with sigma_s due to the intermittent sampling of the velocity field by the density field. The PCA calibration also depends on intermittency. We derive a PCA calibration based on fBms with sigma_s<2 and apply it to 367 CO spectral maps of molecular clouds in the Galactic Ring Survey. The average slope of the PCA structure function, =0.62\pm0.2, is consistent with the hydrodynamic simulations and leads to a turbulence velocity exponent =2.06\pm0.6 for a non-intermittent, low density dispersion flow. Accounting for intermittency and density dispersion, the coincidence between the PCA slope of the GRS clouds and the hydrodynamic simulations suggests beta_v~1.9, consistent with both Burgers and compressible intermittent turbulence

    Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping

    Get PDF
    We report the results of a 100 square degree survey of the Taurus Molecular Cloud region in the J = 1-0 transition of 12CO and 13CO. The image of the cloud in each velocity channel includes ~ 3 million Nyquist sampled pixels on a 20" grid. The high sensitivity and large linear dynamic range of the maps in both isotopologues reveal a very complex, highly structured cloud morphology. There are large scale correlated structures evident in 13CO emission having very fine dimensions, including filaments, cavities, and rings. The 12CO emission shows a quite different structure, with particularly complex interfaces between regions of greater and smaller column density defining the boundaries of the largest-scale cloud structures. The axes of the striations seen in the 12CO emission from relatively diffuse gas are aligned with the direction of the magnetic field. Using a column density-dependent model for the CO fractional abundance, we derive the mass of the region mapped to be 24,000 solar masses, a factor of three greater than would be obtained with canonical CO abundance restricted to the high column density regions. We determine that half the mass of the cloud is in regions having column density below 2.1x10^{21} per square cm. The distribution of young stars in the region covered is highly nonuniform, with the probability of finding a star in a pixel with a specified column density rising sharply for N(H2) = 6x10^{21} cm^{-2}. We determine a relatively low star formation efficiency (mass of young stars/mass of molecular gas), between 0.3 and 1.2 %, and an average star formation rate during the past 3 Myr of 8x10^{-5} stars yr^{-1}.Comment: 53 pages, 21 figure

    Evolution of Molecular and Atomic Gas Phases in the Milky Way

    Get PDF
    We analyze radial and azimuthal variations of the phase balance between the molecular and atomic interstellar medium (ISM) in the Milky Way (MW) using archival CO(J = 1-0) and HI 21 cm data. In particular, the azimuthal variations—between the spiral arm and interarm regions—are analyzed without any explicit definition of the spiral arm locations. We show that the molecular gas mass fraction, i.e., f_(mol)= Σ_H_2/Σ_(HI) + Σ_H_2, varies predominantly in the radial direction: starting from ~ 100 at the center, remaining 50% to R ~ 6kpc and decreasing to ~10%–20% at R = 8.5 kpc when averaged over the whole disk thickness (from ~100% to ≳ 60%, then to ~50% in the midplane). Azimuthal, arm-interarm variations are secondary: only ~ 20% in the globally molecule-dominated inner MW, but becoming larger, ~40%–50%, in the atom-dominated outskirts. This suggests that in the inner MW the gas remains highly molecular (f_(mol) > 50%) as it moves from an interarm region into a spiral arm and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts where the gas phase is globally atomic (f_(mol) > 50%). The HI and H_2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., the LMC, M33, and M51). We explain the radial gradient of f_(mol) using a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in the Appendix
    • …
    corecore