810 research outputs found
Behavior of Complex Knots in Single DNA Molecules
We used optical tweezers to tie individual DNA molecules in knots. Although these knots become highly localized under tension, they remain surprisingly mobile and undergo thermal diffusion with classical random walk statistics. The diffusion constants of knots with different complexities correlate with theoretical calculations of knot sizes. We show that this correlation can be explained by a simple hydrodynamical model of "self-reptation" of the knot along a polymer
Integrating the processes in the evolutionary system of domestication
Genetics has long been used as a source of evidence to understand domestication origins. A recent shift in the emphasis of archaeological evidence from a rapid transition paradigm of hunter-gatherers to agriculturalists, to a protracted transition paradigm has highlighted how the scientific framework of interpretation of genetic data was quite dependent on archaeological evidence, resulting in a period of discord in which the two evidence types appeared to support different paradigms. Further examination showed that the discriminatory power of the approaches employed in genetics was low, and framed within the rapid paradigm rather than testing it. In order to interpret genetic data under the new protracted paradigm it must be taken into account how that paradigm changes our expectations of genetic diversity. Preliminary examination suggests that a number of features that constituted key evidence in the rapid paradigm are likely to be interpreted very differently in the protracted paradigm. Specifically, in the protracted transition the mode and mechanisms involved in the evolution of the domestication syndrome have become much more influential in the shape of genetic diversity. The result is that numerous factors interacting over several levels of organization in a domestication system need to be taken into account in order to understand the evolution of the process. This presents a complex problem of integration of different data types which is difficult to describe formally. One possible way forward is to use Bayesian approximation approaches that allow complex systems to be measured in a way that does not require such formality
Gravitational instability of simply rotating AdS black holes in higher dimensions
We study the stability of AdS black hole holes rotating in a single two plane
for tensor-type gravitational perturbations in space-time dimensions.
First, by an analytic method, we show that there exists no unstable mode when
the magnitude of the angular momentum is smaller than where
is the horizon radius, and is the AdS curvature radius. Then, by numerical
calculations of quasinormal modes, using the separability of the relevant
perturbation equations, we show that an instability occurs for rapidly rotating
black holes with , although the growth rate is tiny (of order
of the inverse horizon radius). We give numerical evidences
indicating that this instability is caused by superradiance.Comment: 17 page
Exploring Planets with Directed Aerial Robot Explorers
Global Aerospace Corporation (GAC) is developing a revolutionary system architecture for exploration of planetary atmospheres and surfaces from atmospheric altitudes. The work is supported by the NASA Institute for Advanced Concepts (NIAC). The innovative system architecture relies upon the use of Directed Aerial Robot Explorers (DAREs), which essentially are long-duration-flight autonomous balloons with trajectory control capabilities that can deploy swarms of miniature probes over multiple target areas. Balloon guidance capabilities will offer unprecedented opportunities in high-resolution, targeted observations of both atmospheric and surface phenomena. Multifunctional microprobes will be deployed from the balloons once over the target areas, and perform a multitude of functions, such as atmospheric profiling or surface exploration, relaying data back to the balloons or an orbiter. This architecture will enable low-cost, low-energy, long-term global exploration of planetary atmospheres and surfaces. This paper focuses on a conceptual analysis of the DARE architecture capabilities and science applications for Venus, Titan and Jupiter. Preliminary simulations with simplified atmospheric models show that a relatively small trajectory control wing can enable global coverage of the atmospheres of Venus and Titan by a single balloon over a 100-day mission. This presents unique opportunities for global in situ sampling of the atmospheric composition and dynamics, atmospheric profiling over multiple sites with small dropsondes and targeted deployment of surface microprobes. At Jupiter, path guidance capabilities of the DARE platforms permits targeting localized regions of interest, such as "hot spots" or the Great Red Spot. A single DARE platform at Jupiter can sample major types of the atmospheric flows (zones and belts) over a 100-day mission. Observations by deployable probes would reveal if the differences exist in radiative, dynamic and compositional environments at these sites
Engineering Cooperativity in Biomotor-Protein Assemblies
A biosynthetic approach was developed to control and probe cooperativity in multiunit biomotor assemblies by linking molecular motors to artificial protein scaffolds. This approach provides precise control over spatial and elastic coupling between motors. Cooperative interactions between monomeric kinesin-1 motors attached to protein scaffolds enhance hydrolysis activity and microtubule gliding velocity. However, these interactions are not influenced by changes in the elastic properties of the scaffold, distinguishing multimotor transport from that powered by unorganized monomeric motors. These results highlight the role of supramolecular architecture in determining mechanisms of collective transport
A first insight into the genetic diversity of Mycobacterium tuberculosis in Dar es Salaam, Tanzania, assessed by spoligotyping
BACKGROUND: Tanzania has a high tuberculosis incidence, and genotyping studies of Mycobacterium tuberculosis in the country are necessary in order to improve our understanding of the epidemic. Spoligotyping is a potentially powerful genotyping method due to fast generation of genotyping results, high reproducibility and low operation costs. The recently constructed SpolDB4 database and the model-based program 'Spotclust' can be used to assign isolates to families, subfamilies and variants. The results of a study can thus be analyzed in a global context. RESULTS: One hundred forty-seven pulmonary isolates from consecutive tuberculosis patients in Dar es Salaam were spoligotyped. SpolDB4 and 'Spotclust' were used to assign isolates to families, subfamilies and variants. The CAS (37%), LAM (22%) and EAI (17%) families were the most abundant. Despite the dominance of these three families, diversity was high due to variation within M. tuberculosis families. Of the obtained spoligopatterns, 64% were previously unrecorded. CONCLUSION: Spoligotyping is useful to gain an overall understanding of the local TB epidemic. This study demonstrates that the extensive TB epidemic in Dar es Salaam, Tanzania is caused by a few successful M. tuberculosis families, dominated by the CAS family. Import of strains was a minor problem
Three-dimensional magnetic flux-closure patterns in mesoscopic Fe islands
We have investigated three-dimensional magnetization structures in numerous
mesoscopic Fe/Mo(110) islands by means of x-ray magnetic circular dichroism
combined with photoemission electron microscopy (XMCD-PEEM). The particles are
epitaxial islands with an elongated hexagonal shape with length of up to 2.5
micrometer and thickness of up to 250 nm. The XMCD-PEEM studies reveal
asymmetric magnetization distributions at the surface of these particles.
Micromagnetic simulations are in excellent agreement with the observed magnetic
structures and provide information on the internal structure of the
magnetization which is not accessible in the experiment. It is shown that the
magnetization is influenced mostly by the particle size and thickness rather
than by the details of its shape. Hence, these hexagonal samples can be
regarded as model systems for the study of the magnetization in thick,
mesoscopic ferromagnets.Comment: 12 pages, 11 figure
Tuning the domain wall orientation in thin magnetic strips by induced anisotropy
We report on a method to tune the orientation of in-plane magnetic domains
and domain walls in thin ferromagnetic strips by manipulating the magnetic
anisotropy. Uniaxial in-plane anisotropy is induced in a controlled way by
oblique evaporation of magnetic thin strips. A direct correlation between the
magnetization direction and the domain wall orientation is found experimentally
and confirmed by micromagnetic simulations. The domain walls in the strips are
always oriented along the oblique evaporation-induced easy axis, in spite of
the shape anisotropy. The controlled manipulation of domain wall orientations
could open new possibilities for novel devices based on domain-wall
propagation
Efficacy of repeated intrathecal triamcinolone acetonide application in progressive multiple sclerosis patients with spinal symptoms
BACKGROUND: There are controversial results on the efficacy of the abandoned, intrathecal predominant methylprednisolone application in multiple sclerosis (MS) in contrast to the proven effectiveness in intractable postherpetic neuralgia. METHODS: We performed an analysis of the efficacy of the application of 40 mg of the sustained release steroid triamcinolone acetonide (TCA). We intrathecally injected in sterile saline dissolved TCA six times within three weeks on a regular basis every third day in 161 hospitalized primary and predominant secondary progressive MS patients with spinal symptoms. The MS patients did not experience an acute onset of exacerbation or recent distinct increased progression of symptoms. We simultaneously scored the MS patients with the EDSS and the Barthel index, estimated the walking distance and measured somatosensory evoked potentials. Additionally the MS patients received a standardized rehabilitation treatment. RESULTS: EDSS score and Barthel index improved, walking distance increased, latencies of somatosensory evoked potentials of the median and tibial nerves shortened in all MS patients with serial evaluation (p < 0.0001 for all variables). Side effects were rare, five patients stopped TCA application due to onset of a post lumbar puncture syndrome. CONCLUSIONS: Repeated intrathecal TCA application improves spinal symptoms, walking distance and SSEP latencies in progressive MS patients in this uncontrolled study. Future trials should evaluate the long-term benefit of this invasive treatment
- …