38 research outputs found

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    Towards tight adaptive security of non-interactive key exchange

    Get PDF
    We investigate the quality of security reductions for non-interactive key exchange (NIKE) schemes. Unlike for many other cryptographic building blocks (like public-key encryption, signatures, or zero-knowledge proofs), all known NIKE security reductions to date are non-tight, i.e., lose a factor of at least the number of users in the system. In that sense, NIKE forms a particularly elusive target for tight security reductions. The main technical obstacle in achieving tightly secure NIKE schemes are adaptive corruptions. Hence, in this work, we explore security notions and schemes that lie between selective security and fully adaptive security. Concretely: We exhibit a tradeoff between key size and reduction loss. We show that a tighter reduction can be bought by larger public and secret NIKE keys. Concretely, we present a simple NIKE scheme with a reduction loss of O(N2log (Îœ) / Îœ2), and public and secret keys of O(Îœ) group elements, where N denotes the overall number of users in the system, and Îœ is a freely adjustable scheme parameter. Our scheme achieves full adaptive security even against multiple “test queries” (i.e., adversarial challenges), but requires keys of size O(N) to achieve (almost) tight security under the matrix Diffie-Hellman assumption. Still, already this simple scheme circumvents existing lower bounds. We show that this tradeoff is inherent. We contrast the security of our simple scheme with a lower bound for all NIKE schemes in which shared keys can be expressed as an “inner product in the exponent”. This result covers the original Diffie-Hellman NIKE scheme, as well as a large class of its variants, and in particular our simple scheme. Our lower bound gives a tradeoff between the “dimension” of any such scheme (which directly corresponds to key sizes in existing schemes), and the reduction quality. For Îœ= O(N), this shows our simple scheme and reduction optimal (up to a logarithmic factor). We exhibit a tradeoff between security and key size for tight reductions. We show that it is possible to circumvent the inherent tradeoff above by relaxing the desired security notion. Concretely, we consider the natural notion of semi-adaptive security, where the adversary has to commit to a single test query after seeing all public keys. As a feasibility result, we bring forward the first scheme that enjoys compact public keys and tight semi-adaptive security under the conjunction of the matrix Diffie-Hellman and learning with errors assumptions. We believe that our results shed a new light on the role of adaptivity in NIKE security, and also illustrate the special role of NIKE when it comes to tight security reductions

    The system integration of flexible electronics into a soft exoskeleton

    No full text
    In order to make exoskeletons more useful for a larger variety of users, especially within healthcare, it is of utmost importance to improve its wear ability. The scope of the XoSoft project is to develop a soft, wearable and comfortable soft exoskeleton. Here we describe the partial research on the integration of textile sensors for the XoSoft soft exoskeleton. Various resistive textile sensors for knee-sensing were made. All sensors show repeatable results however, their accuracy and usability for this project are questionable
    corecore