189 research outputs found

    First mid-infrared spectrum of a faint high-z galaxy: Observations of CFRS 14.1157 with the Infrared Spectrograph on the Spitzer Space Telescope

    Full text link
    The unprecedented sensitivity of the Infrared Spectrograph on the Spitzer Space Telescope allows for the first time the measurement of mid-infrared spectra from 14 to 38 microns of faint high-z galaxies. This unique capability is demonstrated with observations of sources having 16 micron fluxes of 3.6 mJy (CFRS 14.1157) and 0.35 mJy (CFRS 14.9025). A spectral-fitting technique is illustrated which determines the redshift by fitting emission and absorption features characteristic of nearby galaxies to the spectrum of an unknown source. For CFRS 14.1157, the measured redshift is z = 1.00+/-0.20 in agreement with the published result of z = 1.15. The spectrum is dominated by emission from an AGN, similar to the nucleus of NGC 1068, rather than a typical starburst with strong PAH emission like M82. Such spectra will be crucial in characterizing the nature of newly discovered distant galaxies, which are too faint for optical follow-up.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 5 figure

    Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope

    Full text link
    We have surveyed a field covering 9.0 degrees^2 within the NOAO Deep Wide-Field Survey region in Bootes with the Multiband Imaging Photometer on the Spitzer Space Telescope (SST) to a limiting 24 um flux density of 0.3 mJy. Thirty one sources from this survey with F(24um) > 0.75 mJy which are optically very faint (R > 24.5 mag) have been observed with the low-resolution modules of the Infrared Spectrograph on SST. Redshifts derived primarily from strong silicate absorption features are reported here for 17 of these sources; 10 of these are optically invisible (R > 26 mag), with no counterpart in B_W, R, or I. The observed redshifts for 16 sources are 1.7 < z < 2.8. These represent a newly discovered population of highly obscured sources at high redshift with extreme infrared to optical ratios. Using IRS spectra of local galaxies as templates, we find that a majority of the sources have mid-infrared spectral shapes most similar to ultraluminous infrared galaxies powered primarily by AGN. Assuming the same templates also apply at longer wavelengths, bolometric luminosities exceed 10^13 L(solar).Comment: Accepted for publication on 7 Feb 2005 in ApJL. 7 pages 2 figure

    Spitzer-IRS Spectroscopy of the Prototypical Starburst Galaxy NGC7714

    Full text link
    We present observations of the starburst galaxy NGC 7714 with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra yield a wealth of ionic and molecular features that allow a detailed characterization of its properties. NGC 7714 has an HII region-like spectrum with strong PAH emission features. We find no evidence for an obscured active galactic nucleus, and with [NeIII]/[NeII]~0.73, NGC7714 lies near the upper end of normal-metallicity starburst galaxies. With very little slicate absorption and a temperature of the hottest dust component of 340K, NGC 7714 is the perfect template for a young, unobscured starburstComment: To appear in the special ApJSS issue on early results from Spitze

    CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor

    Full text link
    We present the detailed science case, and brief descriptions of the telescope design, site, and first light instrument plans for a new ultra-wide field submillimeter observatory, CCAT-prime, that we are constructing at a 5600 m elevation site on Cerro Chajnantor in northern Chile. Our science goals are to study star and galaxy formation from the epoch of reionization to the present, investigate the growth of structure in the Universe, improve the precision of B-mode CMB measurements, and investigate the interstellar medium and star formation in the Galaxy and nearby galaxies through spectroscopic, polarimetric, and broadband surveys at wavelengths from 200 um to 2 mm. These goals are realized with our two first light instruments, a large field-of-view (FoV) bolometer-based imager called Prime-Cam (that has both camera and an imaging spectrometer modules), and a multi-beam submillimeter heterodyne spectrometer, CHAI. CCAT-prime will have very high surface accuracy and very low system emissivity, so that combined with its wide FoV at the unsurpassed CCAT site our telescope/instrumentation combination is ideally suited to pursue this science. The CCAT-prime telescope is being designed and built by Vertex Antennentechnik GmbH. We expect to achieve first light in the spring of 2021.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, June 14th, 201

    Maternal iron kinetics and maternal–fetal iron transfer in normal-weight and overweight pregnancy

    Full text link
    Background Inflammation during pregnancy may aggravate iron deficiency (ID) by increasing serum hepcidin and reducing iron absorption. This could restrict iron transfer to the fetus, increasing risk of infant ID and its adverse effects. Objectives We aimed to assess whether iron bioavailability and/or iron transfer to the fetus is impaired in overweight/obese (OW) pregnant women with adiposity-related inflammation, compared with normal-weight (NW) pregnant women. Methods In this prospective study, we followed NW (n = 43) and OW (n = 40) pregnant women who were receiving iron supplements from the 14th week of gestation to term and followed their infants to age 6 mo. We administered 57Fe and 58Fe in test meals mid-second and mid-third trimester, and measured tracer kinetics throughout pregnancy and infancy. Results In total, 38 NW and 36 OW women completed the study to pregnancy week 36, whereas 30 NW and 27 OW mother–infant pairs completed the study to 6 mo postpartum. Both groups had comparable iron status, hemoglobin, and serum hepcidin throughout pregnancy. Compared with the NW, the OW pregnant women had 1) 43% lower fractional iron absorption (FIA) in the third trimester (P = 0.033) with median [IQR] FIA of 23.9% [11.4%–35.7%] and 13.5% [10.8%–19.5%], respectively; and 2) 17% lower maternal–fetal iron transfer from the first tracer (P = 0.051) with median [IQR] maternal–fetal iron transfer of 4.8% [4.2%–5.4%] and 4.0% [3.6%–4.6%], respectively. Compared with the infants born to NW women, infants born to OW women had lower body iron stores (BIS) with median [IQR] 7.7 [6.3–8.8] and 6.6 [4.6–9.2] mg/kg body weight at age 6 mo, respectively (P = 0.024). Prepregnancy BMI was a negative predictor of maternal–fetal iron transfer (ÎČ = −0.339, SE = 0.144, P = 0.025) and infant BIS (ÎČ = −0.237, SE = 0.026, P = 0.001). Conclusions Compared with NW, OW pregnant women failed to upregulate iron absorption in late pregnancy, transferred less iron to their fetus, and their infants had lower BIS. These impairments were associated with inflammation independently of serum hepcidin

    Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope: Early Results on Mrk 1014, Mrk 463, and UGC 5101

    Full text link
    We present spectra taken with the Infrared Spectrograph on Spitzer covering the 5-38micron region of three Ultraluminous Infrared Galaxies (ULIRGs): Mrk 1014 (z=0.163), and Mrk 463 (z=0.051), and UGC 5101 (z=0.039). The continua of UGC 5101 and Mrk 463 show strong silicate absorption suggesting significant optical depths to the nuclei at 10microns. UGC 5101 also shows the clear presence of water ice in absorption. PAH emission features are seen in both Mrk 1014 and UGC 5101, including the 16.4micron line in UGC 5101. The fine structure lines are consistent with dominant AGN power sources in both Mrk 1014 and Mrk 463. In UGC 5101 we detect the [NeV] 14.3micron emission line providing the first direct evidence for a buried AGN in the mid-infrared. The detection of the 9.66micron and 17.03micron H2_{2} emission lines in both UGC 5101 and Mrk 463 suggest that the warm molecular gas accounts for 22% and 48% of the total molecular gas masses in these galaxies.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 3 figure

    The Infrared Spectrograph on the Spitzer Space Telescope

    Full text link
    The Infrared Spectrograph (IRS) is one of three science instruments on the Spitzer Space Telescope. The IRS comprises four separate spectrograph modules covering the wavelength range from 5.3 to 38micron with spectral resolutions, R \~90 and 600, and it was optimized to take full advantage of the very low background in the space environment. The IRS is performing at or better than the pre-launch predictions. An autonomous target acquisition capability enables the IRS to locate the mid-infrared centroid of a source, providing the information so that the spacecraft can accurately offset that centroid to a selected slit. This feature is particularly useful when taking spectra of sources with poorly known coordinates. An automated data reduction pipeline has been developed at the Spitzer Science Center.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 6 pages, 4 figure

    Spitzer/IRS Observations of the Redshift 3.91 quasar APM 08279+5255

    Full text link
    The Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope (SST) has been used to obtain low and moderate resolution spectra of the dust and gas-rich quasar APM08279+5255 (z=3.91). Broad Paschen α\alpha and ÎČ\beta recombination lines of hydrogen were detected at wavelengths of 9.235 and 6.315microns, as well as a strong, red continuum that is a smooth power law over the observed (rest frame) wavelength range 5.3-35microns (1.08 - 7.1microns). The observed Pα\alpha/PÎČ\beta line flux ratio of 1.05±\pm0.2 is far from the case B value of ~2 and simple models of high density, high optical depth ionized gas regions (~1.8). This deviation is opposite in sense to the expected effect of reddening. No evidence is found in the spectrum for either the 3.3micron or 6.2micron emission features usually attributed to aromatic hydrocarbons in gas rich galaxies in the local Universe. This is consistent with the high luminosity AGN nature of APM08279+5255.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 1 figur

    Imaging of High Redshift Submillimeter Galaxies at 16 and 22microns with the Spitzer/IRS: Revealing a population at z>2.5

    Full text link
    We present broad band imaging observations obtained with the ``peak up'' imagers of the Spitzer Space Telescope Infrared Spectrograph (IRS) at wavelengths of 16micron and 22micron for a number of sources detected primarily at submillimeter wavelengths, which are believed to be at high, though undetermined, redshift. We targeted 11 sources originally detected by SCUBA and 5 submillimeter sources detected at 1.2mm by MAMBO. Two optically discovered quasars with z>6 were also observed to determine if there is detectable dust emission at such high redshifts. Seven of the submillimeter sources and both high-redshift quasars were detected, and upper limits of about ~50microJy apply to the remainder. Using their mid-/far-IR colors, we demonstrate that all of the submillimeter sources are at z>1.4. The mid-IR colors for two of our detections and three of our strong upper limits suggest that these galaxies must be at z>2.5. We also introduce a technique for estimating redshifts and source characteristics based only on the ratio of fluxes in the 16micron and 22micron images.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 1 figur
    • 

    corecore