17,077 research outputs found
Charged Cylindrical Collapse of Anisotropic Fluid
Following the scheme developed by Misner and Sharp, we discuss the dynamics
of gravitational collapse. For this purpose, an interior cylindrically
symmetric spacetime is matched to an exterior charged static cylindrically
symmetric spacetime using the Darmois matching conditions. Dynamical equations
are obtained with matter dissipating in the form of shear viscosity. The effect
of charge and dissipative quantities over the cylindrical collapse are studied.
Finally, we show that homogeneity in energy density and conformal flatness of
spacetime are necessary and sufficient for each other.Comment: 19 pages, accepted for publication in Gen. Relativ. Gra
Measuring multipole moments of Weyl metrics by means of gyroscopes
Using the technique of Rindler and Perlick we calculate the total precession
per revolution of a gyroscope circumventing the source of Weyl metrics. We
establish thereby a link between the multipole moments of the source and an
``observable'' quantity. Special attention deserves the case of the
gamma-metric. As an extension of this result we also present the corresponding
expressions for some stationary space-times.Comment: 18 pages Latex, To appear in J.Math.Phy
Thermodynamics of noncommutative quantum Kerr black holes
Thermodynamic formalism for rotating black holes, characterized by
noncommutative and quantum corrections, is constructed. From a fundamental
thermodynamic relation, equations of state and thermodynamic response functions
are explicitly given and the effect of noncommutativity and quantum correction
is discussed. It is shown that the well known divergence exhibited in specific
heat is not removed by any of these corrections. However, regions of
thermodynamic stability are affected by noncommutativity, increasing the
available states for which some thermodynamic stability conditions are
satisfied.Comment: 16 pages, 9 figure
Geodesics in a quasispherical spacetime: A case of gravitational repulsion
Geodesics are studied in one of the Weyl metrics, referred to as the M--Q
solution. First, arguments are provided, supporting our belief that this
space--time is the more suitable (among the known solutions of the Weyl family)
for discussing the properties of strong quasi--spherical gravitational fields.
Then, the behaviour of geodesics is compared with the spherically symmetric
situation, bringing out the sensitivity of the trajectories to deviations from
spherical symmetry. Particular attention deserves the change of sign in proper
radial acceleration of test particles moving radially along symmetry axis,
close to the surface, and related to the quadrupole moment of the
source.Comment: 30 pages late
Dynamics of Non-adiabatic Charged Cylindrical Gravitational Collapse
This paper is devoted to study the dynamics of gravitational collapse in the
Misner and Sharp formalism. We take non-viscous heat conducting charged
anisotropic fluid as a collapsing matter with cylindrical symmetry. The
dynamical equations are derived and coupled with the transport equation for
heat flux obtained from the Mller-Israel-Stewart causal thermodynamic
theory. We discuss the role of anisotropy, electric charge and radial heat flux
over the dynamics of the collapse with the help of coupled equation.Comment: 15 pages, accepted for publication in Astrophys. Space Sc
Spherically symmetric dissipative anisotropic fluids: A general study
The full set of equations governing the evolution of self--gravitating
spherically symmetric dissipative fluids with anisotropic stresses is deployed
and used to carry out a general study on the behaviour of such systems, in the
context of general relativity. Emphasis is given to the link between the Weyl
tensor, the shear tensor, the anisotropy of the pressure and the density
inhomogeneity. In particular we provide the general, necessary and sufficient,
condition for the vanishing of the spatial gradients of energy density, which
in turn suggests a possible definition of a gravitational arrow of time. Some
solutions are also exhibited to illustrate the discussion.Comment: 28 pages Latex. To appear in Phys.Rev.
Are the hosts of VLBI selected radio-AGN different to those of radio-loud AGN?
Recent studies have found that radio-AGN selected by radio-loudness show
little difference in terms of their host galaxy properties when compared to
non-AGN galaxies of similar stellar mass and redshift. Using new 1.4~GHz VLBI
observations of the COSMOS field we find that approximately 49\% of
high-mass (M 10 M), high luminosity (L
10 W~Hz) radio-AGN possess a VLBI detected counterpart. These
objects show no discernible bias towards specific stellar masses, redshifts or
host properties other than what is shown by the radio-AGN population in
general. Radio-AGN that are detected in VLBI observations are not special, but
form a representative sample of the radio-loud AGN population.Comment: 6 pages, 4 figures, lette
- …