10,845 research outputs found

    On the dual interpretation of zero-curvature Friedmann-Robertson-Walker models

    Get PDF
    Two possible interpretations of FRW cosmologies (perfect fluid or dissipative fluid)are considered as consecutive phases of the system. Necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system (the ''critical point '').Comment: 13 pages Latex, to appear in Class.Quantum Gra

    Collapsing Spheres Satisfying An "Euclidean Condition"

    Full text link
    We study the general properties of fluid spheres satisfying the heuristic assumption that their areas and proper radius are equal (the Euclidean condition). Dissipative and non-dissipative models are considered. In the latter case, all models are necessarily geodesic and a subclass of the Lemaitre-Tolman-Bondi solution is obtained. In the dissipative case solutions are non-geodesic and are characterized by the fact that all non-gravitational forces acting on any fluid element produces a radial three-acceleration independent on its inertial mass.Comment: 1o pages, Latex. Title changed and text shortened to fit the version to appear in Gen.Rel.Grav

    Charging Interacting Rotating Black Holes in Heterotic String Theory

    Full text link
    We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of General Relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low--energy string theory the double Ernst system can be particularly interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb--Ramond fields. We clarify the rotating character of the BtϕB_{t\phi}--component of the antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low--energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4D effective field theory of the heterotic string. This transformation generates the U(1)nU(1)^n vector field content of the whole low--energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio

    String theory extensions of Einstein-Maxwell fields: the static case

    Get PDF
    We present a new approach for generation of solutions in the four-dimensional heterotic string theory with one vector field and in the five-dimensional bosonic string theory starting from the static Einstein-Maxwell fields. Our approach allows one to construct the solution classes invariant with respect to the total subgroup of the three-dimensional charging symmetries of these string theories. The new generation procedure leads to the extremal Israel-Wilson-Perjes subclass of string theory solutions in a special case and provides its natural continuous extension to the realm of non-extremal solutions. We explicitly calculate all string theory solutions related to three-dimensional gravity coupled to an effective dilaton field which arises after an appropriate charging symmetry invariant reduction of the static Einstein-Maxwell system.Comment: 19 pages in late
    • …
    corecore