11,021 research outputs found

    Analysis of the mechanical behaviour of a 11.5 T Nb3Sn LHC dipole magnet according to the ring collar concept

    Get PDF
    According to the CERN-LHC (Large Hadron Collider) reference design, 10-tesla twin-aperture NbTi dipoles will be built with split collars that enclose both apertures. As part of the development program towards an experimental 11.5-tesla Nb3Sn LHC dipole magnet, the mechanical implications of an alternative collar concept have been studied with a finite element analysis. In this concept ring shaped collars are shrunk on each finished single aperture coil, thus providing the necessary room-temperature prestress. This system results in a major improvement of the stress distribution in the collars. It is noted that introduction of friction at the sliding planes can cause reopening of the gap between the yoke halves during excitation. This depends strongly on the value of the friction coefficient

    Estimation of fiber diameters in the spinal dorsal columns from clinical data

    Get PDF
    Lack of human morphometric data regarding the largest nerve fibers in the dorsal columns (DCs) of the spinal cord has lead to the estimation of the diameters of these fibers from clinical data retrieved from patients with a new spinal cord stimulation (SCS) system. These patients indicated the perception threshold of stimulation induced paresthesia in various body segments, while the stimulation amplitude was increased. The fiber diameters were calculated with a computer model, developed to calculate the effects of SCS on spinal nerve fibers. This computer model consists of two parts: (1) a three-dimensional (3-D) volume conductor model of a spinal cord segment in which the potential distribution due to electrical stimulation is calculated and (2) an electrical equivalent cable model of myelinated nerve fiber, which uses the calculated potential field to determine the threshold stimulus needed for activation. It is shown that the largest fibers in the medial DCs are significantly smaller than the largest fibers in the lateral parts. This finding is in accordance with the fiber distribution in cat, derived from the corresponding propagation velocities. Moreover, it is shown that the mediolateral increase in fiber diameter is mainly confined to the lateral parts of the DCs. Implementation of this mediolateral fiber diameter distribution of the DCs in the computer model enables the prediction of the recruitment order of dermatomal paresthesias following increasing electrical stimulation amplitud

    Role of social environment and social clustering in spread of opinions in co-evolving networks

    Get PDF
    Taking a pragmatic approach to the processes involved in the phenomena of collective opinion formation, we investigate two specific modifications to the co-evolving network voter model of opinion formation, studied by Holme and Newman [1]. First, we replace the rewiring probability parameter by a distribution of probability of accepting or rejecting opinions between individuals, accounting for the asymmetric influences in relationships among individuals in a social group. Second, we modify the rewiring step by a path-length-based preference for rewiring that reinforces local clustering. We have investigated the influences of these modifications on the outcomes of the simulations of this model. We found that varying the shape of the distribution of probability of accepting or rejecting opinions can lead to the emergence of two qualitatively distinct final states, one having several isolated connected components each in internal consensus leading to the existence of diverse set of opinions and the other having one single dominant connected component with each node within it having the same opinion. Furthermore, and more importantly, we found that the initial clustering in network can also induce similar transitions. Our investigation also brings forward that these transitions are governed by a weak and complex dependence on system size. We found that the networks in the final states of the model have rich structural properties including the small world property for some parameter regimes. [1] P. Holme and M. Newman, Phys. Rev. E 74, 056108 (2006)

    Determination of the trap-assisted recombination strength in polymer light emitting diodes

    Get PDF
    The recombination processes in poly(p-phenylene vinylene) based polymer light-emitting diodes (PLEDs) are investigated. Photogenerated current measurements on PLED device structures reveal that next to the known Langevin recombination also trap-assisted recombination is an important recombination channel in PLEDs, which has not been considered until now. The dependence of the open-circuit voltage on light intensity enables us to determine the strength of this process. Numerical modeling of the current-voltage characteristics incorporating both Langevin and trap-assisted recombination yields a correct and consistent description of the PLED, without the traditional correction of the Langevin prefactor. At low bias voltage the trap-assisted recombination rate is found to be dominant over the free carrier recombination rate.

    Renormalization of the charged scalar field in curved space

    Full text link
    The DeWitt-Schwinger proper time point-splitting procedure is applied to a massive complex scalar field with arbitrary curvature coupling interacting with a classical electromagnetic field in a general curved spacetime. The scalar field current is found to have a linear divergence. The presence of the external background gauge field is found to modify the stress-energy tensor results of Christensen for the neutral scalar field by adding terms of the form (eF)2(eF)^2 to the logarithmic counterterms. These results are shown to be expected from an analysis of the degree of divergence of scalar quantum electrodynamics.Comment: 24 pages REVTe
    corecore