868 research outputs found
Electrical Tuning of Single Nitrogen-Vacancy Center Optical Transitions Enhanced by Photoinduced Fields
We demonstrate precise control over the zero-phonon optical transition
energies of individual nitrogen-vacancy (NV) centers in diamond by applying
multiaxis electric fields, via the dc Stark effect. The Stark shifts display
surprising asymmetries that we attribute to an enhancement and rectification of
the local electric field by photoionized charge traps in the diamond. Using
this effect, we tune the excited-state orbitals of strained NV centers to
degeneracy and vary the resulting degenerate optical transition frequency by
>10 GHz, a scale comparable to the inhomogeneous frequency distribution. This
technique will facilitate the integration of NV-center spins within photonic
networks.Comment: 10 pages, 6 figure
Thermoelectricity in Nanowires: A Generic Model
By employing a Boltzmann transport equation and using an energy and size
dependent relaxation time () approximation (RTA), we evaluate
self-consistently the thermoelectric figure-of-merit of a quantum wire
with rectangular cross-section. The inferred shows abrupt enhancement in
comparison to its counterparts in bulk systems. Still, the estimated for
the representative BiTe nanowires and its dependence on wire parameters
deviate considerably from those predicted by the existing RTA models with a
constant . In addition, we address contribution of the higher energy
subbands to the transport phenomena, the effect of chemical potential tuning on
, and correlation of with quantum size effects (QSEs). The obtained
results are of general validity for a wide class of systems and may prove
useful in the ongoing development of the modern thermoelectric applications.Comment: 15 pages, 6 figures; Dedicated to the memory of Amirkhan Qezell
Atomic layer deposition of titanium nitride for quantum circuits
Superconducting thin films with high intrinsic kinetic inductance are of
great importance for photon detectors, achieving strong coupling in hybrid
systems, and protected qubits. We report on the performance of titanium nitride
resonators, patterned on thin films (9-110 nm) grown by atomic layer
deposition, with sheet inductances of up to 234 pH/square. For films thicker
than 14 nm, quality factors measured in the quantum regime range from 0.4 to
1.0 million and are likely limited by dielectric two-level systems.
Additionally, we show characteristic impedances up to 28 kOhm, with no
significant degradation of the internal quality factor as the impedance
increases. These high impedances correspond to an increased single photon
coupling strength of 24 times compared to a 50 Ohm resonator, transformative
for hybrid quantum systems and quantum sensing.Comment: 10 pages, 8 figures including supplemental material
ASSOCIATION OF LACTOFERRIN WITH SPECIFIC GRANULES IN RABBIT HETEROPHIL LEUKOCYTES
Lactoferrin has been identified in rabbit heterophil leukocytes on the basis of its immunological reactivity, electrophoretic mobility, acid-resistant iron-binding properties, and spectral characteristics. Leukocyte lactoferrin was found to be exclusively localized in the specific (secondary) granules, which have been resolved from other subcellular components by zonal differential centrifugation and by isopycnic equilibration
ANTIBODIES OF THE IgA TYPE IN INTESTINAL PLASMA CELLS OF GERMFREE MICE AFTER ORAL OR PARENTERAL IMMUNIZATION WITH FERRITIN
In adult germfree C3H mice immunized with horse spleen ferritin, either subcutaneously or intraperitoneally, plasma cells containing specific antibodies were found in lymph nodes and spleen and, in smaller numbers, also in the lamina propria of the intestine. In extraintestinal sites, these antiferritin-containing plasma cells were mainly of the IgM class after a single stimulation, and of the IgG1 class after repeated stimulation. In the intestine, all the anti-ferritin-containing cells appeared to be of the IgA class. Circulating antibodies, after repeated stimulation, were for the major part IgG1 and IgG2. In germfree mice given ferritin in their drinking water, antiferritin-containing cells were abundant in the intestinal mucosa, much less numerous in the mesenteric lymph nodes, and extremely scarce in other lymphoid tissues. All these cells, whatever their location, appeared to belong exclusively to the IgA class. Similarly, all the circulating antibody in these animals was found to be IgA. These findings illustrate the role of the gut as a site of antibody synthesis, as well as its selective commitment to the production of antibodies of the IgA class
- …