1,745 research outputs found

    Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    Get PDF
    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide

    XANES and EXAFS study of Au-substituted YBa2Cu3O(7-delta)

    Get PDF
    The near-edge structure (XANES) of the Au L3 and Cu K edges of YBa2Au(0.3)Cu(2.7)O(7-delta) was studied. X ray diffraction suggests that Au goes on the Cu(1) site and XANES shows that this has little effect on the oxidation state of the remaining copper. The gold L3 edge develops a white line feature whose position lies between that of trivalent gold oxide (Au2O3) and monovalent potassium gold cyanide (KAu(CN)2) and whose intensity relative to the edge step is smaller than in the two reference compounds. The L3 EXAFS for Au in the superconductor resembles that of Au2O3. However, differences in the envelope of the Fourier filtered component for the first shell suggest that the local structure of the Au in the superconductor is not equivalent to Au2O3

    Chemical approaches to carbon dioxide utilization for manned Mars missions

    Get PDF
    Use of resources available in situ is a critical enabling technology for a permanent human presence in space. A permanent presence on Mars, e.g., requires a large infrastructure to sustain life under hostile conditions. As a resource on Mars, atmospheric CO2 is as follows: abundant; available at all points on the surface; of known presence; chemically simple; and can be obtained by simple compression. Many studies focus on obtaining O2 and the various uses for O2 including life support and fuel; discussion of CO, the coproduct from CO2 fixation revolves around its uses as a fuel, being oxidized back to CO2. Several new proposals are studied for CO2 fixation through chemical, photochemical, and photoelectrochemical means. For example, the reduction of CO2 to hydrocarbons such as acetylene (C2H2) can be accomplished with H2. C2H2 has a theoretical vacuum specific impulse of approx. 375 secs. Potential uses were also studied of CO2, as obtained or further reduced to carbon, as a reducing agent in metal oxide processing to form metals or metal carbides for use as structural or power materials; the CO2 can be recycled to generate O2 and CO

    Non-uniform transition conductivity of superconducting ceramic

    Get PDF
    The effects of microstructural variations on the superconducting properties of SmBa2Cu3Ox are investigated. A scanning eddy current probe revealed the onset and growth of a normal conducting region. Resistance versus temperature measurements taken at different regions of the sample support the concept of a physically mixed state system. Regional variations in porosity and grain size distributions affect the observed superconducting transition

    Material processing with hydrogen and carbon monoxide on Mars

    Get PDF
    Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrogen. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquids. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed

    Reactivity of pi-complexes of Ti, V, and Nb towards dithioacetic acid: Synthesis and structure of novel metal sulfur-containing complexes

    Get PDF
    In order to use sulfur-containing resources economically and with minimal environmental damage, it is important to understand the desulfurization processes. Hydrodesulfurization, for example, is carried out on the surface of a heterogeneous metal sulfide catalyst. Studies of simple, soluble inorganic systems provide information regarding the structure and reactivity of sulfur-containing compounds with metal complexes. Further, consistent with recent trends in materials chemistry, many model compounds warrant further study as catalyst precursors. The reactivity of low-valent organometallic sandwich pi-complexes toward dithiocarboxylic acids is described. For example, treatment of bisbenzene vanadium with CH3CSSH affords a divanadium tetrakis(dithioacetate) complex. The crystallographically determined V-V bond distance, 2.800(2), is nearly the same as the V-V bond distance in a V(mu-nu squared-S2)2V' unit in the mineral patonite (VS4)n. The stability of the V2S4 core in the dimer is demonstrated by evidence of V2S4(+) in the mass spectrum (70 eV, solid probe) of the vanadium dimer. Several other systems relevant to HDS catalysis are also discussed

    The stochastic limit in the analysis of the open BCS model

    Full text link
    In this paper we show how the perturbative procedure known as {\em stochastic limit} may be useful in the analysis of the Open BCS model discussed by Buffet and Martin as a spin system interacting with a fermionic reservoir. In particular we show how the same values of the critical temperature and of the order parameters can be found with a significantly simpler approach

    Production and use of metals and oxygen for lunar propulsion

    Get PDF
    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed

    Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Get PDF
    Fisher-Trpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Trpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported
    • …
    corecore