41 research outputs found

    Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability

    Get PDF
    The strength of interactions is crucial to the stability of ecological networks. However, the patterns of interaction strengths in mathematical models of ecosystems have not yet been based upon independent observations of balanced material fluxes. Here we analyse two Antarctic ecosystems for which the interaction strengths are obtained: (1) directly, from independently measured material fluxes, (2) for the complete ecosystem and (3) with a close match between species and ‘trophic groups’. We analyse the role of recycling, predation and competition and find that ecosystem stability can be estimated by the strengths of the shortest positive and negative predator-prey feedbacks in the network. We show the generality of our explanation with another 21 observed food webs, comparing random-type parameterisations of interaction strengths with empirical ones. Our results show how functional relationships dominate over average-network topology. They make clear that the classic complexity-instability paradox is essentially an artificial interaction-strength result

    Role of fauna in soil physical processes

    No full text

    Modeling and analysis of grid harmonic distortion impact of aggregated DG inverters

    No full text
    This paper proposes an impedance-based analytical method for modeling and analysis of harmonic interactions between the grid and aggregated distributed generation (DG) inverters. The root cause of harmonic interaction/resonance problems is the impedance-network quasi-resonance between the effective output impedance of the inverter and the equivalent grid impedance at the connection point. Starting with the output impedance modeling of an inverter, a Norton model of the inverter is derived. Comparing with the switching model and the average model of the inverter, simulation results show the effectiveness of the model. This paper proposes that impedance limits should be specified and used as an extra design constraint for DG inverters in order to minimize the harmonic distortion impact on the grid. Assuming the impedance models of individual inverters and local loads within a distribution grid are known, especially in the case of new grids under construction, harmonic interactions between the grid and a certain number of DG inverters can be preliminarily estimated
    corecore